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Abstract
Lung cancer is the leading cause of cancer- related deaths worldwide. Surgery and 
chemoradiation are the standard of care in early stages of non- small cell lung can-
cer (NSCLC), while immunotherapy is the standard of care in late- stage NSCLC. 
The immune composition of the tumor microenvironment (TME) is recognized 
as an indicator for responsiveness to immunotherapy, although much remains 
unknown about its role in responsiveness to surgery or chemoradiation. In this 
pilot study, we characterized the NSCLC TME using mass cytometry (CyTOF) 
and bulk RNA sequencing (RNA- Seq) with deconvolution of RNA- Seq being per-
formed by Kassandra, a recently published deconvolution tool. Stratification of 
patients based on the intratumoral abundance of B cells identified that the B- cell 
rich patient group had increased expression of CXCL13 and greater abundance 
of PD1+ CD8 T cells. The presence of B cells and PD1+ CD8 T cells correlated 
positively with the presence of intratumoral tertiary lymphoid structures (TLS). 
We then assessed the predictive and prognostic utility of these cell types and TLS 
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1  |  INTRODUCTION

Lung cancer remains the major cause of cancer- related 
deaths both globally and within the USA, accounting for 
12% of all new cancers and 22% of cancer- related deaths.1 
Non- small cell lung cancer (NSCLC), the most common 
histopathological variant of lung cancer, accounts for 85% 
of the newly diagnosed cases each year and includes two 
predominant subtypes, adenocarcinoma and squamous 
cell carcinoma.1 Lung adenocarcinoma (LUAD) accounts 
for about 40% of all lung cancer.1 A combination of surgi-
cal resection, radiation, and chemotherapy is the standard 
of care in early stages of the disease, and immunotherapy 
improves patient outcomes in advanced stages of the dis-
ease.2 The 5- year survival rate when combining all stages 
of NSCLC is among the lowest in cancers, even with treat-
ment.1 Hence it is crucial to identify better pre- treatment 
predictive and prognostic indicators that would allow for 
better selection of treatment plans for each patient based 
on their unique tumor microenvironment (TME).

Tumors expressing higher levels of programmed cell 
death ligand- 1 (PD- L1) are known to be more responsive 
to treatment with immune checkpoint inhibitors (ICI); 
however, the predictive power of the commonly used FDA- 
approved biomarker for ICI response in NSCLC, PD- L1 
expression identified by immunohistochemistry (IHC), is 
limited.3,4 Multiple immune cell populations have been 
hypothesized as more robust predictors of response to ICI. 
Tumor infiltrating leukocytes (TIL), particularly CD8 T cells, 
are suggested in this context.5– 8 However, their location in 
the TME poses a challenge in using CD8 T cells as a reliable 
biomarker in routine clinical practice. A B- cell- derived gene 
expression signature has also been shown to be correlated 
with response to treatment with ICI in a study reported by 
Varn et al.9 While there is literature on identifying respond-
ers to ICI, there is limited research on cellular and cytokine 
elements of the pre- treatment TME and whether they could 

be prognostic indicators of outcome in surgery, chemora-
diation or immunotherapy. Understanding and developing 
pre- treatment immune markers and correlates will allow 
for better selection of patients for each treatment (surgery, 
chemoradiation, and/or immunotherapy) and could help 
improve the 5- year survival rate in lung cancer.

We proposed that an in- depth analysis of the TME 
would allow for a better understanding of immune sub-
types of NSCLC and also identify pre- treatment prognostic 
indicators. While single- cell proteomic analysis of tumors 
provides this information, tissue dissociation alters the com-
position and functional state of the TME.10– 12 Alternatively, 
bulk RNA Sequencing (RNA- Seq) can be performed on 
fresh frozen and formalin- fixed paraffin- embedded (FFPE) 
tissues. Cell composition of the TME is then reconstructed 
using one of many cell deconvolution algorithms, which are 
often developed for specific tumor tissues and have limited 
capacity to identify cell subpopulations.13,14

In this pilot study, we evaluate the cell composition of 
the TME in a small cohort of NSCLC, using mass cytome-
try (CyTOF)15– 17 and by deconvolution of RNA- Seq using 
Kassandra, a recently published deconvolution tool,18– 20 
and assess the predictive and prognostic utility of select 
cell types within publicly available datasets of LUAD. As 
previously described by others, the pre- treatment expres-
sion of intratumoral 12- chemokine tertiary lymphoid 
structure (TLS) gene signature is associated with progres-
sion free survival (PFS) in patients who receive treatment 
with ICI. Interestingly, in our study we found that pre- 
treatment percentages of intratumoral B cells in the TME 
are associated with PFS in patients who receive surgery, 
chemotherapy, or radiation. Validating these findings on a 
larger dataset would allow us to identify appropriate treat-
ment options based on pre- treatment expression of the 
immune markers. Further studies would also be of benefit 
to look at prognostic indicators in surgery and chemoradi-
ation, independently.
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within publicly available stage 3 and 4 lung adenocarcinoma (LUAD) RNA- Seq 
datasets. As previously described by others, pre- treatment expression of intratu-
moral 12- chemokine TLS gene signature is associated with progression free sur-
vival (PFS) in patients who receive treatment with immune checkpoint inhibitors 
(ICI). Notably and unexpectedly pre- treatment percentages of intratumoral B 
cells are associated with PFS in patients who receive surgery, chemotherapy, or 
radiation. Further studies to confirm these findings would allow for more effec-
tive patient selection for both ICI and non- ICI treatments.
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2  |  METHODS

2.1 | Subjects and samples

The study was approved by the Institutional Review Board 
at Massachusetts General Hospital (MGH). Tumor tissue 
was obtained from patients diagnosed with NSCLC who 
underwent surgical resection at MGH between 2017 and 
2019. To avoid metal contamination that would affect 
CyTOF analysis, active smokers and patients who under-
went chemotherapy with cisplatin or had a recent MRI 
with contrast agent were excluded. Of the 56 samples col-
lected, 11 had sufficient tissue for both CyTOF and RNA- 
Seq. CyTOF and RNA- Seq were performed on the same 
cell suspension (CS) for all 11 patients, and RNA- Seq 
alone was performed on fresh frozen tissue (FFT) for 9 of 
the 11 patients (Figure 1). For eight of the eleven samples 
we were able to procure hematoxylin and eosin (H&E) 
and IHC images of a portion of the tumor. Seven out of 
eleven samples utilized in this study were previously de-
scribed by Zaitsev et al.20 in validating the deconvolution 
tool, Kassandra.

2.2 | Tumor tissue processing

Resected tissue from each patient was immediately col-
lected into a conical tube containing Leibowitz- 15 media 
(Life Technologies Corporation; Grand Island, New York, 
USA). Dark black patches that appeared necrotic were re-
moved, and the remaining tissue was weighed. The tissue 
was dissected into small pieces of approximately 30 mg 

weight using microdissection scissors. Random pieces of 
tissue weighing a minimum of 30 mg and a maximum of 
90 mg were collected per patient and stored in aliquots 
of 30 mg/500 μL of RNAlater (Invitrogen, Thermo Fisher 
Scientific; Waltham, Massachusetts, USA). These were 
used as FFT for RNA- seq. The remaining tissue was 
treated using the protocol referred to in Quatromoni 
et al.21 Using microdissection scissors, the tissue was dis-
sected into 1 mm3 pieces and digested at 37°C for 1.5 h in 
L- 15 media containing collagenase I, collagenase II, colla-
genase IV, elastase, and RNAse- free DNAse (Worthington 
Biochemical Corporation; Lakewood, New Jersey, USA; 
Roche Diagnostics; Germany) at 25 mL of digestion 
media per 0.5 mg of tissue. Digested samples were then 
passed through a 70 μm filter and homogenized using a 
plunger. Erythrocytes were lysed using multi- species 
red blood cell lysis buffer (eBioscience, Thermo Fisher 
Scientific; Waltham, Massachusetts, USA). Post- lysis, the 
cell suspension (CS) was passed through a 40 μm filter 
and counted using trypan blue staining. Cells (2.5 million) 
were separated for CyTOF labelling. Another 2.5 million 
cells were resuspended in RNAlater at 500,000 cells/350 μL 
of RNAlater. CS and FFT samples in RNAlater were stored 
at 4°C overnight and frozen to −80°C the following day.

2.3 | Mass cytometry

2.3.1 | Sample preparation

Pre- conjugated antibodies were obtained from Fluidigm Inc. 
(South San Francisco, CA) and the Lederer Lab at Brigham 

F I G U R E  1  Overall schematic for sample collection and analysis.
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4 |   RAJU PAUL et al.

and Women's Hospital (Boston, MA) (Table S1). A reference 
sample was created for the study to assess the day- to- day var-
iation in staining using peripheral blood mononuclear cells 
(PBMC) isolated from a leukopak. The PBMCs were frozen 
in multiple aliquots and stored in liquid nitrogen in media 
containing 90% fetal bovine serum (FBS) and 10% dimethyl 
sulfoxide (DMSO). CS samples were labeled for CyTOF on 
the same day as surgical resection of the tumor. The reference 
sample was labeled with CD45 on 165Ho and was added into 
each tumor sample at a 1:20 ratio of reference- to- tumor cells. 
Then, cells were labeled for CyTOF with cisplatin (viability 
reagent) and surface antibodies, fixed with paraformalde-
hyde, permeabilized, and labeled with intracellular antibod-
ies. The following day, the sample was intercalated with an 
iridium- based DNA intercalator as a cell identifier and data 
was acquired at a rate of 200– 400 events per second on the 
Helios mass cytometer (Fluidigm Inc.; South San Francisco, 
CA). An unlabeled sample was also acquired to check for any 
metal contamination in the sample.

2.3.2 | Data analysis

The overall pipeline for the identification of major cell 
populations and subpopulations is shown in Figure  S1. 
Detailed data analysis is included in Supplementary 
Methods. In brief, all 11 CyTOF samples were gated using 
FlowJo 10.0.7 (FlowJo LLC; Ashland, Oregon, USA) to re-
move the reference PBMCs and thereafter to identify vi-
able cells from the patient (Figure  S2A). Ten major cell 
populations were identified in each sample by FlowSOM22 
(version 1.20.0) clustering. All unlabeled cells and 
cells with non- specific annotation were grouped under 
“Other.” CD90 was not labeled in VIC- 017 and VIC- 019; 
hence, fibroblasts and endothelial cells were not identified 
in these patients.

Subpopulations were defined for four major cell popu-
lations. Prior to this, batch effect correction was performed 
by quantile- based normalization within the individual 
cell populations. Post- normalization, each cell population 
was independently clustered using FlowSOM to identify 
14, 12, 8, and 11 subpopulations for CD8 T cells, CD4 T 
cells, B cells, and macrophages/monocytes/dendritic cells 
(DC), respectively, each with a unique phenotypic profile.

2.4 | RNA sequencing

2.4.1 | RNA extraction, library 
preparation, and sequencing

Tumor CS samples were prepared using Rneasy Micro 
and/or Rneasy Plus Micro kits (Qiagen; Hilden, Germany). 

FFT samples (30 mg each) were prepared using the 
AllPrep DNA/RNA Mini kit (Qiagen; Hilden, Germany). 
Total RNA amounts and degradation values for CS and 
FFT were obtained using RNA 6000 Nano Chip run on a 
2100 BioAnalyzer or RNA screening tape run on a 2200 
TapeStation (Agilent; Santa Clara, California, USA). 
RNA- Seq libraries were prepared using the TruSeq RNA 
Library Prep Kit v2 (Illumina, Inc; San Diego, California, 
USA). Library products were purified by an AMPure XP 
(Beckman Coulter Genomics, Indianapolis, Indiana, 
USA) bead purification and enriched with standard pol-
ymerase chain reaction to create a final cDNA library. 
Final library quality control was carried out by evaluat-
ing the fragment size on a DNA1000 chip run on a 2100 
BioAnalyzer or high sensitivity D1000 ScreenTape run 
on a 2200 TapeStation (Agilent; Santa Clara, California, 
USA). The concentration of each library was determined 
by quantitative PCR by the KAPA Library Quantification 
Kit for Next Generation Sequencing (KAPA Biosystems; 
Woburn, Massachusetts, USA) prior to sequencing.

Libraries were normalized to 2  nmol/L in 10 mM 
Tris- Cl, pH 8.5 with 0.1% Tween 20, then pooled evenly to 
yield approximately 100 million paired- end reads for each 
sample. The pooled libraries were denatured with 0.05 N 
NaOH and diluted to 20 pmol/L. Cluster generation of the 
denatured libraries was performed according to the man-
ufacturer's specifications (Illumina, Inc; San Diego, CA) 
utilizing the HiSeq PE Cluster Kit v2 and/or v4 chemistry 
and flow cells. Libraries were clustered appropriately with 
a 1% PhiX spike- in. Sequencing- by- synthesis (SBS) was 
performed on a HiSeq2500 utilizing appropriate chem-
istry with paired- end 101 bp reads. Sequence- read data 
were processed and converted to FASTQ format for down-
stream analysis by Illumina BaseSpace analysis software, 
FASTQ Generation v1.0.0.

2.4.2 | Data analysis

Next- generation sequencing (NGS) quality control analy-
sis was performed using FastQC (v0.11.5 http://www.
bioin forma tics.babra ham.ac.uk/proje cts/fastq c/), FastQ 
Screen23 (v0.11.1), RSeQC24 (v3.0.0) and MultiQC25 (v1.6). 
Reads were aligned using Kallisto26 (v0.46.0) to Gencode 
(v23). Noncoding, coding histones, and mitochondrial 
transcripts were removed, resulting in 20,062 transcripts 
for downstream analysis. Gene expressions were quanti-
fied as transcripts per million (TPM) with log2 transfor-
mation. Deconvolution of RNA- Seq was performed using 
Kassandra.18– 20

MiXCR27 (v2.1.7) was applied to quantify BCR/TCR 
repertoires from RNA- Seq. Post- processing of data was 
done on Python.
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2.5 | TCGA and GEO datasets

Data from The Cancer Genome Atlas (TCGA) LUAD,28 
GSE135222 (Jung et al.29) and GSE126044 (Cho et al.30) 
were used in this manuscript. For the TCGA data, clinical 
data, including survival data, was downloaded from the 
GDC TCGA data portal31 (MC3 dataset). Transcriptomic 
data were downloaded from the USCS XENA portal 
(https://xena.ucsc.edu/) as TPM units. Sample IDs were 
unified to patient IDs (first 12 characters). Patients with 
more than 1 tumor RNA- Seq sample or missing clinical 
annotation were removed. GSE135222 (Jung et al.29) and 
GSE126044 (Cho et al.30) were downloaded from Gene 
Expression Omnibus (GEO) as SRA archives. Annotation 
was downloaded for GEO, which included immuno-
therapy response data for GSE126044 (Cho et al.30). For 
GSE135222 (Jung et al.29), additional supplementary in-
formation that included survival and immunotherapy 
response data was extracted from the corresponding 
publication.

2.6 | Histopathology: H&E and IHC

For H&E staining, 5- micron- thick FFPE slides 5- micron 
were washed twice for 5 min each in xylene, 100% etha-
nol, and 95% ethanol, followed by a brief rinse in water 
and a 15- min incubation in hematoxylin. After a brief 
water rinse post- incubation, slides were dipped in 0.25% 
hydrochloric acid- ethanol, followed by brief dip in 1% 
lithium carbonate, a water rinse, and a 5- min incuba-
tion in eosin Y. Slides were then briefly rinsed twice each 
with 95% ethanol, 100% ethanol, and xylene and were 
cover- slipped.

IHC for CD3 and CD20 was performed on 
5- micron- thick formalin- fixed paraffin- embedded whole 
tissue sections using the following antibodies (clone, cat-
alog number, dilution, vendor): CD3 (polyclonal, A0452, 
1:400, Dako, Agilent Technologies; Santa Clara, California, 
USA) and CD20 (monoclonal/L26, M0755, 1:140, Dako, 
Agilent Technologies; Santa Clara, California, USA), each 
using DIVA retrieval in the decloaker (Biocare Medical; 
Pacheco, California, USA) and a polymer detection sys-
tem (Dako, Agilent Technologies; Santa Clara, California, 
USA), with counterstains using dab and hematoxylin.

2.6.1 | Data analysis

A pathologist conducted a blinded examination of FFPE 
H&E slides using Aperio ImageScope software (Aperio, 
Leica; Vista, CA, USA). H&E and IHC slides were manually 

aligned by the pathologist. Semi- quantitative lymphocytic 
and fibrotic scores were calculated using a modification 
of a previously described scoring system.32– 34 The 5- grade 
system comprises scores: 0 (characteristic is missing), 1 
(minimal presence of a characteristic), 2 (characteristic is 
moderately pronounced), 3 (characteristic is pronounced), 
and 4 (characteristic is extremely pronounced). In IHC, 
the percentage of CD20+ and CD3+ cells were calculated 
in the tumor in VIC samples.

The presence of intratumoral TLS was assessed on 
H&E- stained slides and by IHC in full- face tumor sec-
tions using a previously published grading system.35– 38 
On H&E, total amount of TLS included TLS in all 3 stages 
of development, namely, aggregates (clusters of lympho-
cytes), primary follicles (circles of lymphocytes with re-
ticular stroma and without germinal center formation), or 
secondary follicles (primary follicles with germinal cen-
ters). On IHC, TLS were identified as dense round- shaped 
clusters of CD20+ cells surrounded by CD3+ cells.37

2.7 | Statistical analysis and data 
visualization

2.7.1 | Analysis

For statistical analyses and plotting, python (version 3.7.5) 
and R (version 4.0.2) were used. Data analysis in R was 
done using the following packages: dplyr, stringi, em-
means, arm, pwr, PRROC, car, and annotables. Median 
comparison was done using the Wilcoxon signed- rank 
test for paired samples and the Mann– Whitney test for 
unpaired samples. For survival analyses, Kaplan– Meier 
curves, log- rank tests, and Cox regression were performed 
using package Lifelines39 (version 0.25.9). Spearman's test 
was used for correlation analysis, except in CyTOF data 
normalization when Pearson's correlation was used. For 
t- SNE plots, Barnes– Hut implementation in python pack-
age Multicore tSNE was used.40 Generalized linear models 
were constructed by the binomial family with logit link 
function.

2.7.2 | Plotting

Figure  1 was created in BioRender (https://biore nder.
com/). Survival curves were drawn on Python using the 
package Lifelines (version 0.25.9). Figure  S1 was drawn 
in Inkscape version 1.0. All other plots were created using 
python packages, matplotlib version 3.3.0, and seaborn 
version 0.9.0. Formatting was done in Inkscape for Linux 
version 1.0.
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3  |  RESULTS

3.1 | Subjects

To analyze the TME in NSCLC, we collected tissue sam-
ples of surgically resected tumors from 11 NSCLC patients 
(labeled as VIC). Six out of eleven patients were males, 
and the mean age of the VIC cohort was 70.8 years with a 
standard deviation of 9.6 years. Histopathological analysis 
revealed that nine out of eleven cases were lung adenocar-
cinoma while two out of eleven were lung squamous cell 
carcinomas (LUSC) (Table S2).

3.2 | Immune and non- immune 
components of the TME in NSCLC as 
identified by mass cytometry

CS samples were first analyzed by CyTOF. Viable single 
cells were identified through manual gating (Figure S2A) 
and clustered using FlowSOM to identify 11 major cell 
populations: CD20+ B cells, CD20− B cells, CD4 T cells, 
CD8 T cells, NK cells, neutrophils, macrophages/mono-
cytes/DC, myeloid- derived suppressor cells (MDSC), fi-
broblasts, endothelial cells, tumor, and others (expressing 
non- canonical markers). These major cell populations 
are represented in a t- distributed stochastic neighbor em-
bedding (t- SNE) plot in Figure 2A. The expression of ca-
nonical markers within the t- SNE coordinates is shown in 
Figure 2B. The abundance of the major cell populations in 
the TME in each sample is shown in Figure 2C. B cells, CD4 
T cells, CD8 T cells, and macrophages were independently 
clustered to identify subpopulations (Figure S2B– D).

No differences were observed in the abundance of the 
immune populations between LUAD (9/11) and LUSC 
(2/11) samples. In general, samples with greater abun-
dance of B cells (CD20+ and CD20−) had lower abundance 
of innate cell population namely macrophage, monocyte, 
and dendritic cells (Figures 2C and S2D).

3.3 | Deconvolution of RNA- Seq data by 
Kassandra correlated with mass cytometry

In most studies involving human samples, fresh fro-
zen or formalin fixed tumor samples are analyzed rou-
tinely by bulk RNA- Seq. To identify immune cells from 
this data, RNA- Seq data needs to be deconvolved. In our 
study, we used the recently published deconvolution 
tool, Kassandra.18– 20 In the context of overall correlation 
of all cell populations within the tumor, in addition to 
the cell populations assessed by Zaitsev et al.,20 we also 
looked at B- cell subpopulations and separated monocytes 

from macrophages and dendritic cells. Samples with 
<75% viable cells in CyTOF (Figure S3A) were excluded 
in this comparative analysis, as dead cells are known to 
have increased non- specific binding of antibodies. The 
Kassandra- predicted cell percentage correlated to the 
abundance identified by CyTOF (Spearman correlation 
coefficient (rho) = 0.862, p < 0.001, Figures 2D,E and S3B). 
Additionally, in CS samples the Kassandra- predicted 
abundance of T cells and CD20+ B cells correlated respec-
tively with the expression levels of T- cell receptor alpha 
(TRA) and immunoglobulin heavy chain (IgH) deter-
mined by RNA- Seq (Spearman rho = 0.96 and 1 respec-
tively, p < 0.001, Figure 2F).

3.4 | B- cell abundance in the TME 
stratified NSCLC into two subtypes

New evidence continues to emerge that B cells in the TME 
play a critical role in NSCLC.9,41 Therefore, we assessed 
the B- cell composition of the VIC cohort. The samples in 
the cohort distinctly separated into two groups (B- cell rich 
and B- cell poor) based on the median abundance of B cells 
in CS (Figure 3A, right). We observed the same trend for 
these samples when their FFT RNA- Seq data was decon-
volved  (Figure  3A, left). B- cell rich samples in FFT had 
elevated levels of the transcripts for CXCL13 and of PD1+ 
CD8 T cells (p < 0.07 and p < 0.2 respectively, Figure 3B, 
upper panel). CXCL13 is a chemokine that is produced 
predominately by PD1+ CD8 T cells42 (Figure S4).

Since the VIC dataset was small (n = 11), we decided to 
see if these subtypes were also seen in larger publicly avail-
able datasets of NSCLC. LUAD samples from the TCGA 
dataset (n = 479) showed a similar trend. Similar to VIC 
samples, samples with higher abundance of B cells from 
the TCGA dataset had elevated levels of transcripts for 
CXCL13 and PD1+ CD8 T cells (p < 0.001, Figure 3B, lower 
panel). The percentage of PD1+ CD8 T cells predicted by 
Kassandra correlated well with the expression of CXCL13 
in both VIC and TCGA datasets (Spearman's rho = 0.709 
to 0.999, p < 0.001, Figure 3B).

3.5 | Predictive and prognostic correlates 
in LUAD

IHC staining of VIC samples with anti- CD20 showed clus-
ters of CD20+ cells (Figure  4A). Based on this observa-
tion and the differential abundance of B cell, PD1+ CD8 
T cell and transcripts for CXCL13 in the VIC cohort and 
the publicly available datasets, we decided to evaluate 
for tertiary lymphoid structures (TLS) which are abun-
dant in B cells and T cells.43,44 TLS were identified in FFT 
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   | 7RAJU PAUL et al.

samples through H&E and IHC, and in RNA- Seq data 
using a previously described 12- chemokine TLS gene ex-
pression signature.45,46 The TLS identified through H&E 
and IHC moderately correlated with the 12- chemokine 
TLS gene signature (rho  =  0.6, p > 0.05, Figure  4B). 
Interestingly, there was a high correlation between the 
12- chemokine TLS gene signature and the percentage of 
B cells (rho = 0.81, p = 0.015, Figure 4C), while there was 
a moderate correlation between PD1+ CD8 T cells and the 
12- chemokine TLS gene signature (rho = 0.595, p > 0.05, 
Figure 4C).

Recent literature points to an increasing role of B cells9 
and TLS45,47 as robust predictors of response to ICI. Due to 
the small number of samples in our cohort, we could not 
assess this. Hence the 12- chemokine TLS gene signature, 

CD8 T cells, and B cells were assessed as a predictor of 
response to ICI in two GEO datasets (GSE135222 and 
GSE126044). When compared to known predictors of 
response to ICI48– 55 (Supplementary Table.  3), we found 
that the abundance of intratumoral CD8 T cells and 
12- chemokine TLS gene signature, individually, per-
formed just as well as a predictive marker of response to 
ICI (AUC = 0.78 and 0.79) in stage 3 and 4 LUAD, while 
the abundance of B cells in the TME was a poor predictor 
of response to ICI (Figures 5A and S5).

In addition to looking at the predictive power of these 
cell populations, we also performed a survival analysis 
based on the individual abundance of B cells, CD8 T cells, 
and 12- chemokine TLS gene signature within stage 3 and 
stage 4 LUAD. Survival analysis conducted on GSE135222 

F I G U R E  2  (A– C) CyTOF- based immune profiles of VIC samples (n = 11). (A) t- SNE plot depicting cell populations identified by 
FlowSOM. (B) t- SNE map with signal intensity of canonical markers. (C) Stacked bar graph of major cell population percentages in 11 
tumor samples. (D– F) Validation of Kassandra deconvolution on RNA- Seq using CyTOF and histopathology of VIC samples (n = 7). 
(D) Comparative stacked bar graph representation of the cellular composition of 7 CS CyTOF and CS RNA- Seq samples. CyTOF data is 
represented as a percent of viable cells and deconvolved CS RNA- Seq data is represented as a percent of all cells. (E) Scatterplots depicting 
the percentages of cell populations derived from CyTOF and CS RNA- Seq. The upper plot is color coded for cell types, while the lower plot is 
color coded for patients. (F) Scatterplots depicting the expression of TRA reads against Kassandra deconvolved percentage of T cells (upper 
plot), and the percentage of IgH reads against Kassandra deconvolved percentage of CD20+ B cells (lower plot) from CS RNA- Seq.

(A)

(D) (E) (F)

(B) (C)
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8 |   RAJU PAUL et al.

indicated that the pre- treatment expression of intratumoral 
12- chemokine TLS gene signature is associated with pro-
gression free survival (PFS) in patients who receive treat-
ment with ICI for Stage 3 and 4 LUAD (Figures 5B and S6). 
Survival analysis conducted on the TCGA LUAD dataset in-
dicated that the pre- treatment percentage of intratumoral B 
cells is associated with PFS in patients who receive surgery, 
chemotherapy or radiation, for Stage 3 and 4 LUAD, regard-
less of pre- treatment levels of immune checkpoint markers 
in tumor (Figures 5C and S7). When we looked at all stages 
of LUAD, we found a similar trend that the pre- treatment 
percentage of intratumoral B cells is associated with overall 
survival (OS) in patients who receive surgery, chemother-
apy, or radiation (Figure S8).

4  |  DISCUSSION

In this study, we describe the composition of the TME 
in a small cohort of patients with NSCLC using CyTOF 

and RNA- Seq. Intratumoral immune profiles described by 
CyTOF were then used to confirm predicted immune pro-
files generated through deconvolution of RNA- Seq using 
Kassandra, a recently described deconvolution algorithm 
with enhanced capabilities in identifying cell populations 
across all cancers. Subsequent analysis segregated the 
patients into two groups based on the abundance of in-
tratumoral B cells, confirmed that TLS are comparable to 
known predictors of ICI response in NSCLC and identi-
fied that pre- treatment levels of B cells in patients treated 
with surgery and/or chemoradiation have associations to 
survival in LUAD.

While bulk RNA- Seq, which is routinely used in clin-
ical research, provides an unbiased profile of the whole 
transcriptome, it does not provide data for single cells 
nor does it evaluate protein expression. Deconvolution 
algorithms enable us to deconvolve cell populations 
from RNA- Seq data; however, most of these algorithms 
have technical constraints in how the noise in the data 
is addressed and most are unable to deconvolve innate 

F I G U R E  3  Immune subtypes of 
NSCLC. (A) Scatterplots depicting the 
percentage of B cells in CyTOF (left) and 
the percentage of B cells in FFT RNA- 
Seq (right) against the percentage of B 
cells in Kassandra deconvolution of CS 
in VIC samples; patients stratified into 
B- cell rich and B- cell poor groups based 
on median abundance (red dotted line). 
Pie plots depict percentages of all cell 
populations as identified by CyTOF (left) 
and by Kassandra deconvolution of FFT 
RNA- Seq (right). (B) Percentage of PD1+ 
CD8 T cells identified by Kassandra (left) 
and expression of CXCL13 identified 
by RNA- Seq (middle) in B- cell rich and 
B- cell poor groups in VIC FFT (first row) 
and TCGA LUAD (second row) datasets. 
Scatterplots show Spearman's correlation 
between the percentage of PD1+ CD8 T 
cells and CXCL13 expression for each of 
the corresponding datasets (right).

(A)

(B)
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   | 9RAJU PAUL et al.

immune cell types.13,14 Recently, the RNA- Seq deconvo-
lution tool Kassandra was developed to deconvolve RNA- 
Seq data from most tumors and identify subpopulations 
of T cells, B cells, and monocytes.18– 20 The comparison 
of cell populations identified by CyTOF and Kassandra 
was carried out by creating a single cell suspension of 
the tumor which had to be processed fresh on the day 
of surgical resection. Consequently, CyTOF data required 
batch correction. Quantile- based normalization used 
routinely in next- generation sequencing data analysis 
was repurposed to remove batch variations in CyTOF. 
Furthermore, while performing this assessment we had to 
address inherent differences between the two techniques. 
For example, historically in cytometry data analysis, dead 
cells are eliminated from downstream analysis, as these 
cells often bind antibodies non- specifically. However, 
RNA from all cells, including dead cells, is assessed in 
RNA- Seq. Hence, comparison of results between both 

techniques required exclusion of samples with a high 
proportion of dead cells and debris. The study is limited 
by the low sample size and its heterogeneity. The number 
of samples included was constrained by the large quan-
tity of tissue required and other inclusion criteria, which 
also extended the time to two years to procure the 11 sam-
ples used in the VIC cohort. In addition to the canonical 
cell populations assessed in the correlation of CyTOF to 
RNA- Seq by Zaitsev et al.,20 we confirmed a good correla-
tion between Kassandra and CyTOF in the VIC cohort 
when assessing B cell subpopulations namely CD20+ and 
CD20− B cells, and when assessing monocytes separate 
from macrophages and dendritic cells (Figure  2D,E). 
For further validation of the deconvolved T cells and B 
cells, we also assessed the correlation of these popula-
tions to TCR and IgH which should only be associated 
with T cells and B cells, respectively. There was a high 
correlation between the variables (Figure 2F). Therefore, 

F I G U R E  4  Assessment of TLS as a predictive and prognostic marker. (A) Manually aligned regions of interest on H&E (top panel), 
CD20+ IHC (middle) and CD3+ IHC (bottom) for patient VIC- 019, with TLS circled in each. (B) Scatterplots depicting correlation between 
12- chemokine signature and TLS on H&E (top) and IHC (bottom) slides in VIC FFT samples. (C) Scatterplots depicting correlation between 
12- chemokine signature and Kassandra deconvolved percentage of B cells (top) and PD1+ CD8 T cells (bottom) in VIC FFT samples.

(A) (B) (C)
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10 |   RAJU PAUL et al.

we decided to continue to use Kassandra in deconvolving 
cells populations from the external datasets.

Informed by recent advances in the understanding 
of B cells in cancer,9,56– 59 we interrogated the VIC and 
external datasets for patterns in intratumoral B- cell dis-
tribution and identified a B- cell rich and B- cell poor 

immune subtype in NSCLC. Various studies have linked 
the increased abundance of B cells in the TME to im-
proved OS in multiple cancers, including NSCLC.56,57,60– 62 
Transcripts for CXCL13, a chemokine which is known 
to be a B- cell chemoattractant, was also higher in the B- 
cell rich subtype of NSCLC. Thommen et al.42 reported 

F I G U R E  5  (A) Receiver operating characteristics curves for 12- chemokine TLS gene signature, CD8 T cells, and B cells in predicting 
response to ICI, in stage 3 and 4 NSCLC, in GSE135222 and GSE126044 datasets (n = 40). (B) Kaplan– Meier survival curves (up to 
20 months post diagnosis) when patients were divided into two groups based on the median of the 12- chemokine signature and the median 
percentage of B cells and CD8 T cells in the GSE135222 dataset. (C) Kaplan– Meier survival curves (up to 125 months post diagnosis) when 
patients were divided into two groups based on the median of the 12- chemokine signature and the median percentage of B cells and CD8 T 
cells in the TCGA LUAD dataset (stage 3 and stage 4 LUAD only).

(A)

(B)

(C)
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that intratumoral CD8 T cells expressing high levels of 
PD1 in tumors have a unique transcriptional phenotype 
and are one of the cell types that produce the chemokine, 
CXCL13. In our study we confirmed that there was a sta-
tistically significant correlation between the abundance 
of PD1+ CD8 T cells and the expression of CXCL13, and 
that PD1+ CD8 T cells and CXCL13 were higher in the B- 
cell rich subtype. CXCL13 and PD1+ CD8 T cells also play 
a key role in the formation of TLS,63 which among other 
cells also contain B cells. TLS, which are identified within 
several cancers, are typically associated with favorable 
outcomes.45,64 In early- stage NSCLC, TLS are associated 
with a low rate of recurrence.65 Additionally, in some can-
cers the presence of TLS correlates with a better response 
to neoadjuvant or immunotherapy.66– 72 In TLS, which are 
found primarily near tumor margins, antigen presenta-
tion results in B- cell development within germinal cen-
ters.45,56,66,67,73 TLS consist of T cells, mature dendritic 
cells, and B cells, surrounded by high endothelial venules 
and TLS architecture is regulated by B cells.43,44 There are 
a number of markers used in the identification of TLS, in-
cluding a 12- chemokine TLS gene signature composed of 
CCL2, CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, 
CXCL9, CXCL10, CXCL11, and CXCL13.45,46 In our study, 
we observed a statistically significant positive correlation 
between the 12- chemokine TLS gene signature and B 
cells, which is not surprising as CXCL13 is a gene included 
in the 12- chemokine TLS gene signature. Although there 
was a positive correlation between the 12- chemokine TLS 
gene signature and PD1+ CD8 T cells, within our dataset 
this was not statistically significant. One possible expla-
nation is that the 12- chemokine TLS gene signature takes 
into account all stages of TLS development while PD1+ 
CD8 T cells secrete CXCL13, which functions primarily 
during the formation of TLS.

Through our assessment of publicly available data-
sets, we confirmed that the 12- chemokine TLS gene sig-
nature and CD8 T cells, regardless of the expression of 
PD1, are comparable to other known predictors of ICI 
response.45,74,75 B cells, CD8 T cells, and TLS are increas-
ingly being studied as predictors of ICI response.45– 47 TLS 
are associated with good clinical outcomes in most can-
cers, including NSCLC.45,74,75 Stromal CD8 T cells are also 
suggested as strong predictors of response to ICI.5– 8,76 Our 
findings were similar in this regard. When we divided the 
patients in the ICI dataset based on their 12- chemokine 
TLS gene signature, B cells, or CD8 T cells, those with a 
higher expression of the 12- chemokine TLS gene signature 
had greater PFS. Similarly, association with improved PFS 
was also seen in patients with elevated CD8 T cells in their 
TME regardless of PD1 expression on cytotoxic T cells. 
However, using our analytical approach B cells were not 
identified as predictive or prognostic indicators for ICI.

Surgery, radiation, and chemotherapy are commonly 
used in treating NSCLC, especially in the early stages of 
therapy. The role of the TME or peripheral immune sys-
tem in outcomes with these non- ICI treatments has not 
been widely studied. In gastric cancer, preoperative sys-
temic inflammatory index developed from circulating 
counts of neutrophils, lymphocytes, and platelets indi-
cated postoperative outcomes.77 The preoperative neutro-
phil to lymphocyte ratio, and platelet to lymphocyte ratio, 
also correlates with outcome in gastric cancer.78,79 Hence 
it is of interest to know how and if pre- treatment immune 
infiltration affects outcome when providing non- ICI treat-
ment, namely surgery and/or chemoradiation. Ojlert 
et al.80 has reported that a rich adaptive immune TME in 
LUAD indicated better prognosis after surgery. Helmink 
et al.67 found that a higher abundance of B cells correlated 
with OS in Stage 3 melanoma. To our knowledge, our as-
sessment is the first of its kind for non- ICI treatments, 
in LUAD. The TCGA LUAD dataset that we analyzed in-
cludes patients that received non- ICI treatment for LUAD. 
Using the RNA sequencing data from this cohort we iden-
tified that pre- treatment B cells in the TME correlate with 
improved PFS in all stages of LUAD.

In the VIC cohort, we found that the 12- chemokine 
TLS signature had a positive correlation to intratumoral 
B cells (Figure 4C). However, when we assessed the pre-
dictive and prognostic role of the 12- chemokine TLS 
signature and B cells in publicly available datasets, the 
12- chemokine TLS signature and B cells did not track 
similarly (Figure  5). One possible reason for this is the 
difference in the abundance of PD1+ CD8 T cells in the B- 
cell rich subtypes between the VIC cohort and the TCGA 
LUAD cohort (Figure 3B). PD1+ CD8 T cells secrete the 
B- cell chemoattractant, CXCL13, which recruits B cells 
into the TME and plays a role in the formation of TLS. 
While all samples in the VIC cohort that belong to the 
B- cell rich subtype express higher levels of PD1+ CD8 T 
cells, there are some samples in the TCGA LUAD B- cell 
rich subtype that express lower levels of PD1+ CD8 T cells 
when compared to the B- cell poor subtype. This differ-
ence in the abundance of PD1+ CD8 T cells could indicate 
that some of the TCGA samples have B cells in their TME 
that are not only recruited via TLS but are rather directly 
recruited into the TME. This could be a reason why the 
12- chemokine TLS gene signature and percentage of B 
cells do not track similarly when we assessed them as pre-
dictive and prognostic indicators in our LUAD datasets.

In conclusion, we confirmed the presence of two im-
mune subtypes of NSCLC based on the intratumoral 
abundance of B cells. TLS, which contain T cells and B 
cells, were then described based on a previously identified 
12- chemokine TLS signature. As observed by others, CD8 
T cells and TLS were comparable predictors of response 
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12 |   RAJU PAUL et al.

to ICI in publicly available datasets. In particular, our ret-
rospective study of the TCGA dataset identified that pre- 
treatment levels of B cells in LUAD could possibly serve as 
a new prognostic indicator of PFS for LUAD patients re-
ceiving surgery or chemoradiation regardless of the stage 
of the disease. This supports the established view that im-
mune subpopulations could be used as prognostic indica-
tors in effective patient selection for appropriate treatment 
(ICI, surgery, or chemoradiation) and that this is worthy 
of further exploration in larger- scale prospective studies.
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