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SUMMARY
Cellular deconvolution algorithms virtually reconstruct tissue composition by analyzing the gene expression
of complex tissues. We present the decision tree machine learning algorithm, Kassandra, trained on a broad
collection of >9,400 tissue and blood sorted cell RNA profiles incorporated into millions of artificial transcrip-
tomes to accurately reconstruct the tumor microenvironment (TME). Bioinformatics correction for technical
and biological variability, aberrant cancer cell expression inclusion, and accurate quantification and normal-
ization of transcript expression increased Kassandra stability and robustness. Performancewas validated on
4,000 H&E slides and 1,000 tissues by comparison with cytometric, immunohistochemical, or single-cell
RNA-seq measurements. Kassandra accurately deconvolved TME elements, showing the role of these pop-
ulations in tumor pathogenesis and other biological processes. Digital TME reconstruction revealed that the
presence of PD-1-positive CD8+ T cells strongly correlated with immunotherapy response and increased the
predictive potential of established biomarkers, indicating that Kassandra could potentially be utilized in
future clinical applications.
INTRODUCTION

The tumor microenvironment (TME) plays an important role in

disease progression and response to therapy. The TME regu-

lates tumor survival, maintenance, growth (Hirata and Sahai,

2017), and immune surveillance (Galon et al., 2006). Elucidating

the TME cellular composition and function of its varied cell pop-

ulations is useful for optimizing more potent therapeutic modal-

ities (Wei et al., 2018).

Although bulk RNA sequencing (RNA-seq) reveals the presence

and quantity of all genes within a tumor and the TME at any given

time, total RNA expression alone cannot identify the cellular origin

of individual RNA molecules without cellular deconvolution.

Primarily based on cell-type-specific gene expression profiles

and linear regression algorithms tominimize the error of observed

and expected expression, multiple deconvolution methods have
previously been used to assess cell types (Aran et al., 2017; Becht

et al., 2016; Finotello et al., 2019; Hao et al., 2019; Jew et al., 2020;

Monaco et al., 2019; Nadel et al., 2021; Newman et al., 2015,

2019; Racle et al., 2017; Wang et al., 2019). Deep learning-based

deconvolution methods have also been recently developed; how-

ever, these approaches often require retraining on data from

single-cell RNA-seq (scRNA-seq) of the same tissue type (Torroja

and Sanchez-Cabo, 2019) or paired flow cytometry data (Menden

et al., 2020), limiting clinical utility.

In addition, these platforms are limited by their ability to accu-

rately identify hierarchical subpopulations within complex cell

mixtures with high precision and specificity (Liu et al., 2019a).

The TME often comprises only a small fraction of the tumor

and bulk RNA-seq reads; however, the precise identification of

small TME cellular subsets, such as natural killer (NK) cells, is

essential because they significantly impact therapeutic response
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Figure 1. Defining RNA profiles of various sorted cell populations to artificially reconstruct tissues

(A) Schematic representing gene expression-dependent cell deconvolution.

(B) t-SNE of major cell types from RNA-seq samples after quality control (QC; n = 9,404).

(C) Graphic depicting blood and tissue cell sorting procedure.

(D) Schematic of sorting and stimulation of Th1, Th2, and Th17 cells.

(E) Heatmap of gene expression patterns according to different Th cell activation statuses.

(F) t-SNE plots showing overlap between the expression profiles of sorted cells from blood (n = 368) and tissue (n = 36) with the sorted cell compendium.

(G and H) Schematic of cell model trees developed for Kassandra-based deconvolution for tumor tissue (G) and blood (H).

(I) Heatmap of gene signatures associated with TME cell types for all RNA-seq samples in the database of sorted cell types. One row represents one RNA-seq

sample (left). Heatmap of additional cell-type-specific gene signatures for cancer-relevant cell subpopulations (right).

(legend continued on next page)
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and clinical outcome across diverse diseases. Addressing tech-

nical noise is essential during cellular deconvolution to accu-

rately identify cell subsets from bulk RNA-seq (Ding et al.,

2015; Rabadan et al., 2018).

Here, we describe the decision tree machine learning (ML) al-

gorithm Kassandra developed for the deconvolution of cell pro-

portions in tissue and blood on different hierarchical levels

created based on the curation of a large homogeneously anno-

tated resource of purified cell RNA profiles. The diverse and

tissue-specific gene expression profiles of malignant cells were

considered during the training process, increasing the stability

of TME and blood reconstruction for comprehensive analysis

of their impact on cancer biology and therapeutics.
RESULTS

Construction of a sorted cell RNA-seq compendium for
artificial transcriptome creation
Current deconvolution algorithms utilizing RNA expression

enable tissue cell composition to be determined based on the

proportion of RNA sequences belonging to unique cell popula-

tions (Figure 1A). To address the complexities of cognate tran-

scriptomic programs of cell subtypes (Figures S1A–S1D), we

developed a decision tree algorithm, Kassandra, designed to

accurately calculate the proportion of different cell subsets by

determining the RNA fraction per cell type from RNA-seq within

noncancerous and cancerous tissues. A collection of more than

18,000 bulk RNA-seq, covering numerous immune and stromal

sorted cell populations and cancer cell lines, was curated using

the GEO and ArrayExpress databases (Barrett et al., 2012). The

raw RNA-seq datasets were combined, homogeneously anno-

tated, and bioinformatically recalculated for comparable mea-

surements of transcript expression within each cell type to

reduce batch effects. After quality control, well-defined cell

clusters were revealed, populating the Kassandra sorted cell

compendium with purified RNA-seq samples (n = 9,404) of

diverse immune and stromal cell populations, including malig-

nant cells from 24 cancer types (n = 2,166) (Figures 1B, S2A,

and S2B).

To deconvolve rare cell types, such as naive and memory

T cell subsets, we FACS-sorted and sequenced 386 samples

representing 41 subpopulations (Figures 1C and S3A–S3F). Clin-

ically relevant T helper (Th) cells were divided into Th1, Th2, and

Th17 functional phenotypes (Figures 1D and 1E), but sorting the

functional phenotypes in their active states directly from tissue is

complex. To circumvent this issue, we sorted Th subtypes from

the blood of heathy donors and stimulated them in vitro, resulting

in the RNA profiles of cells with active production of their desig-

nated cytokines, interleukin-2 (IL-2), IL-4, or IL-17 (Figures 1D

and 1E), and enabling the use of ‘‘steady-state’’ and ‘‘active’’

samples of Th cells to train against intrinsic variability. Overall,

the RNA profiles of cell types sorted from blood and cancer tis-

sues were remarkably similar with the curated RNA profiles (Fig-
(J) Schematic representation of artificial transcriptomes from RNA-seq profiles o

(K) Heatmap comparing RNA-seq gene expression from 514 TCGA non-small c

scriptomes.

See also Figures S1–S4 and Tables S1–S3 and S4.
ure 1F), showing concordance of gene expression of these cell

types across multiple tissues and datasets.

Final collected datasets and samples were annotated into 18

TME cell types (Figure 1G) and 41 populations present in blood

(Figure 1H), a total of 51 unique populations, with RNA profiles

for B cells, T cells, macrophages, NK cells, endothelial cells,

and fibroblasts (Tables S1 and S2). Blood-derived cell types

were divided into 16 CD8+ and CD4+ T cell, 7 B cell, 4 NK cell,

4monocyte and dendritic cell, and 3 granulocyte subpopulations

(Figure 1H). Cell-type-specific genes (Figures 1I and S1C;

Tables S3 and S4) were selected by literature analysis, expres-

sion fold-change analysis between cells applied and correlation

with our RNA-seq database, and feature importance analysis

(Lundberg et al., 2018, 2020) based on ML models (STAR

Methods). The selected genes were filtered to be predominantly

expressed in non-malignant cells (Figure 1I).

With this comprehensive RNA collection of purified cell popu-

lations, we aimed to reconstruct tissue-like and blood-like bulk

RNA profiles and imitate tissue heterogeneity by artificially mix-

ing RNA from different purified cell subsets to create millions of

artificial tumor transcriptomes for the training of Kassandra (Fig-

ure 1J). We hypothesized that expression values for multicellular

tissue can be obtained by summing the gene expression of its in-

dividual cells (Zaitsev et al., 2019) to create artificial tumor RNA

profiles by randomly combining RNA derived from sorted cells

and tumor cell lines in proportions likely to be observed within

actual tissue (STAR Methods; Figure 1J). We initially confirmed

that we could develop artificial tumors after the creation of the

sorted cell compendium and found that they were remarkably

similar to the RNA profiles of true The Cancer Genome Atlas

(TCGA) cancer types (n = 514; mean pairwise correlation value =

0.81; Figures 1K and S4A–S4C). The ability to create artificial

transcriptomes enabled the development of a large-scale artifi-

cial tissue database containing the functional and phenotypic

states of different cell subsets at specified proportions for Kas-

sandra training.

Establishing TPM normalization for algorithm
development
Kassandra used transcripts per million (TPMs) (Li et al., 2010;

Wagner et al., 2012) as an expression unit. Often, variability in to-

tal expression belonging to short RNA transcripts strongly skews

the TPM value distribution of genes of interest (Figure 2A). Non-

coding RNA (e.g., microRNA and miscellaneous-RNA as previ-

ously described in the TCGA RNA pipeline) (George et al.,

2017) (STAR Methods) and short transcripts of T cell receptor

(TCR)- and B cell receptor (BCR)-coding genes, annotated in

the transcriptome as corresponding to the V, D, or J regions,

were excluded from TPM normalization (STAR Methods). His-

tone-coding and mitochondrial genes were excluded because

of the uneven enrichment in different RNA extraction methods

(e.g., poly(A) versus total RNA) (Newton et al., 2020). Unverified

transcripts having low transcript support levels and transcripts

with partially unknown coding sequences were also precluded
f sorted cell populations.

ell lung carcinomas (NSCLC) and 514 artificially developed lung cancer tran-

Cancer Cell 40, 879–894, August 8, 2022 881



Figure 2. Establishment of expression normalization and analysis of technical noise

(A) TPM proportions of transcript types (GENCODE annotation) averaged across samples of different purified B cell datasets sequenced in different laboratories

without renormalization.

(B and C) Violin plots of relative SDs in the expression of 3,515 housekeeping genes for different cell types before (red) and after (blue) transcript filtration and TPM

renormalization for total or poly(A) RNA-seq. White horizontal lines depict the median values. p value was assessed by the two-tailed Wilcoxon test (p);

r corresponds to rank-biserial correlation coefficient.

(D) Principal-component analysis (PCA) of sorted B cell RNA expression from either total (green) or poly(A) RNA-seq (red) before (left) and after (right) proposed

transcript filtration and TPM renormalization.

(E) Gene SD in dependence of gene expression at total coverage of 1 (pink), 5 (yellow), and 10 (green) million read counts.

(F) Dot plot of samples with sequential additions of the shown noise levels: technical within one replicate and technical across multiple replicates and biological.

(G) Violin plot of the distribution of the same SDs of gene expression calculated within samples possessing different types of noise with a two-tailed Mann-

Whitney test for significance. Dashed and dotted lines represent the median and the interquartile range (IQR), respectively.

(H) Measured Poisson noise coefficients for technical replicates of RNA-seq experiments with different total read count coverage.

(I) Dot plots showing dependence of gene expression mean SD on the total coverage of RNA-seq read counts for one cell type within one dataset (left) with

biological and technical noise and (right) after subtraction of the imputed Poisson noise.

STD, standard deviation. See also Figure S5.
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from normalization because of increased noise in the gene

expression calculations. Finally, 48 additional transcripts were

removed according to other annotation tags reporting a lack of

evidence or quality (STARMethods). Our advanced TPMnormal-

ization decreased variation of housekeeping genes (Eisenberg

and Levanon, 2013) (Figures 2B and 2C). Transcript filtering

and TPM renormalizationmade gene expressionmore compara-
882 Cancer Cell 40, 879–894, August 8, 2022
ble across different datasets (e.g., B cell datasets; Figure S5A).

Similarly, principal-component analysis (PCA) of B cell RNA-

seq derived from poly(A) RNA and total RNA enrichment indi-

cated a separation of expression before, but not after, renormal-

ization (Figure 2D). TPM normalization reduced expression batch

effects across different datasets belonging to the curated sorted

cell RNA profile compendium (Figures 2B–2D).



Figure 3. Training and performance of Kassandra deconvolution on artificial transcriptomes

(A) Workflow depicting the development of artificial transcriptomes of different cellular populations, training of tree-based ML procedure (LightGBM) to predict

proportions of admixed cells, and estimation of model parameters using TCGA validation datasets and tissue samples.

(legend continued on next page)
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Variability of sequencing technology influences cell
deconvolution
Gene expression variability depends on the total read counts of

RNA-seq and gene expression level or the number of read

counts aligned on the transcript (Figure 2E). The 40% standard

deviation (SD) of expression was observed at one TPM at 20

million reads coverage or at 125%SDat 1million reads coverage

(Figure 2E). Higher coverage reduces gene expression technical

variability, including clinically relevant genes like PD-1/PD-L1 ex-

pressed at two to four TPMs. Inherent biological variability attrib-

uted to dynamic cell states contributes to transcript variance

among samples. Variations were assessed by examining the

data in the database with multiple replicates and experiments

(Figure 2F). The noise increased from 10% to 26% from technical

(library prep sequenced twice) to biological replicates (multiple

experiments for a dataset) for certain cell types (Figure 2G).

To circumvent errors in analysis caused by technical variability

(non-Poisson and Poisson noise), we formulated a TPM-based

mathematical noise model (STAR Methods). The resulting

dependence of Poisson technical noise ðdPi
Þ on coverage and

gene expression for gene i is expressed as

Poisson technical noise dPi
= a

ffiffiffiffiffiffiffiffiffiffi
1

liT iR

s
; (Equation 1)

where li is an effective gene length, Ti represents mean expres-

sion in TPM units in technical replicates, R represents sample to-

tal read count coverage, and a is the proportional coefficient.

This formula demonstrates lower coverage results in higher vari-

ability. The proposed formula correctly explained gene expres-

sion variability from expression levels and coverage measured

within technical replicates of purified cell populations (Figure 2H).

By plotting replicate coefficient of variation (CV) values depen-

dent on read counts, we calculated the noise coefficient (a)

(Figure 2H). The technical noise for each sample and gene was

inferred according to Equation 1. Technical Poisson noise was

subtracted from all technical noise (Figure S5B) and biological

noise (Figure 2I), obtaining a non-Poisson additive to noise of

approximately 16% (Figures 2I and S5B; STAR Methods).
(B) All datasets from our database were divided into training and validation dat

datasets) for final evaluation of algorithm performance. In stage I training, the mod

cell percentages as a result from stage I training.

(C) Performance of the algorithmmeasured as a Pearson correlation on holdout ar

was assessed by the use of the exact distribution of r (two-tailed test) (p). For all

(D) CD14, FCRLA, STAP1, and PADI2 expression in normal tissue (GTEx), immun

indicates overexpression outliers in cancerous tissue, and the error bars represe

(E and F) Heatmap representing the Pearson correlation of different cell types b

overexpression noise added. Gray boxes indicate that the algorithm does not pr

(G) Schematic showing the variability in the number of RNA molecules for differe

(H) Boxplots depicting the RNA per cell-type coefficients for the listed cell typ

percentile +1.5 IQR; the left whisker indicates the minimum value or 25th percent

cell type.

(I) The dependence of the Pearson correlation of predicted cell percentages by Ka

measured using holdout mixes. The red line indicates the RNA-seq coverage of

(J) Dependence of deconvolution error on overall cell percentage in RNA-seq. Re

1 + �1%).

(K) Graph of the prediction accuracy of Kassandra of pure samples (cell percent

(L) Non-specificity score for the listed 11 deconvolution algorithms. Values are p

positive) predictions for different cell types.

See also Figures S6–S11 and Table S5.
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The creation of artificial tumor transcriptomes adjusted
for technical noise and aberrant gene expression to
train Kassandra
The amount of available TME RNA-seq datasets with known cell

composition are very limited; therefore, artificial RNA-seq of tis-

sues and blood was developed in silico and utilized to train the

Kassandra algorithm to robustly recognize diverse cell popula-

tions. Combinations of all available sorted cell populations and

cancer cell lines were generated to develop cancer-specific arti-

ficial transcriptomes, imitating biological variability. In total, 18

million and 8 million transcriptomes were generated to train Kas-

sandra-Tumor (Figure 1G) and Kassandra-Blood models (Fig-

ure 1H), respectively. For artificial transcriptome creation,

different cell types (RNA-seq from sorted microenvironment

populations and cancer cell lines/sorted cancer cells) were

randomly selected in proportions closely resembling real tissue

(Figure 3A; STAR Methods), and artificial technical noise was

added to each artificial transcriptome as we demonstrated that

technical sequencing variability influences gene expression

measurements (Figures 2E–2G). In addition, all datasets from

the sorted cell compendium were divided prior to creation of

the artificial transcriptomes into training plus validation (84%)

and holdout (16%) datasets to confirm the algorithm remained

unaffected by batch effects across different datasets (Figure 3B).

After the addition of technical noise to the artificial tumor tran-

scriptomes, in the first training stage, the cell-type models were

trained on TPM-calibrated expression values to return RNA frac-

tion per cell type from RNA-seq. In the second stage, the training

data consisted of gene expression combined with the predicted

RNA percentages per cell type obtained in the first stage. This

stepwise training method enabled the model to adapt using

information from other cell types and subtypes for their corre-

sponding models and allowed the utilization of all datasets

hierarchically for artificial transcriptomes (Figure 3B; STAR

Methods). Knowledge regarding the percentages of ‘‘other’’

cell types allowed the second-stage model to adjust subpopula-

tion percentages. Removal of the second stage resulted in

decreased correlation between predicted and true percentages

and increased mean absolute error (MAE) for holdout validation
asets (84% of all datasets) and holdout datasets (validation only, 16% of all

el is trained on gene expression data. In stage II, the model receives predicted

tificial transcriptomes. The significance of Pearson correlation (r) to be nonzero

comparisons, p values were <10�300.

e cell types (from collected database), and cancerous tissue (TCGA). The box

nt SD.

etween predicted and true artificial mix values without (E) or with (F) random

ovide a predicted value for this cell type.

nt cell types.

es. In the boxplots, the right whisker indicates the maximum value or 75th

ile �1.5 IQR. The central line indicates the coefficient median value of RNA per

ssandra with true cell percentages dependent on the total read count coverage

data for which the algorithm was trained and optimized.

d arrow indicates cell percentage (about 1%) where error reaches 100% (e.g.,

age).

ercentages of nonspecific (false-positive) predictions relative to specific (true



Figure 4. Large-scale TME deconvolution from RNA-seq of healthy and tumor tissues

(A) Algorithm validation scheme based on TCGA data using lymphocyte percentages recognized from H&E staining and tumor purity estimated from whole-

exome sequencing (WES).

(B) Violin plots with internal boxplots indicate the differences between cell-type percentages deconvolved by Kassandra on TCGA RNA-seq data (n = 10,489).

CD4+ T cell, fibroblast, and endothelial-enriched groups of cancer types are indicated with dashed lines. Each data point corresponds to a predicted cell pop-

ulation fraction for a single sample. The boxes in the boxplots represent the IQR, where the center lines depict the median. The upper whiskers indicate the

maximum values or 75th percentile +1.5 IQR; the lower whiskers indicate the minimum values or 25th percentile �1.5 IQR.

(C) Pearson correlation between percentages of lymphocytes predicted by Kassandra on TCGARNA-seq data and calculated bymachine analysis of histological

TCGA slides.

(D) Correlation of predicted percentages of malignant cells from RNA-seq by Kassandra with tumor purity estimated from WES for 11 TCGA cancer types.

(E) Pearson correlation values between tumor purity (CPE) and predicted percentages of malignant cells based on TCGA RNA-seq data by different decon-

volution algorithms.

(F and G) Boxplots showing Pearson correlation values for predicted T cell RNA percentage by different deconvolution algorithms with T cell receptor (CDR3

region of TCR) reads and for predicted plasma B cell RNA percentage by different deconvolution algorithms with B cell receptor (CDR3 region of IgH) reads in

different TCGA cancer types. Each data point corresponds to a different cancer type. The boxes in the boxplots represent the interquartile range (IQR), where the

center lines depict the median. The upper whisker indicates the maximum value or 75th percentile +1.5 IQR; the lower whisker indicates the minimum value or

25th percentile �1.5 IQR.

(legend continued on next page)
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datasets (Figures S6A–S6D). The predicted RNA percentages

strongly correlated with the actual admixed RNA percentage in

the artificial transcriptomes for multiple cell types in holdout da-

tasets (r > 0.95; Figure 3C).

However, after this training process, we applied Kassandra for

the reconstruction of tumor tissues and found that aberrant gene

expression, a hallmark of cancer cells, may have interfered with

TME deconvolution as illustrated by the unexpected expression

of various non-malignant markers in different cancers (Fig-

ure 3D). To train the algorithm to ignore tumor aberrant overex-

pression, we added random expression noise to the artificial

transcriptomes (admixed cancer cell lines with TME cell popula-

tions), imitating patient-specific gene overexpression present in

tumors. Using this approach, Kassandra was stable in predicting

cell types within the mixtures with aberrant expression noise

(r = 0.92–0.99), whereas other methods produced weaker corre-

lations (r < 0.70; Figures 3E, 3F, and S7A–S7D). Removing noise

and aberrant gene expression from Kassandra decreased the

correlation coefficients and increased the MAE (Figure S6).

We randomly brute forced combinations of LightGBM parame-

ters, selecting metrics resulting in the highest correlation and

lowest MAE to develop Kassandra (Figures S8A–S8D). We

compared the performance of the final version of Kassandra with

other ML algorithms: a support vector regression (SVR) (e.g., CI-

BERSORTx; Newman et al., 2019) and a deep learning neural

network (NN)-based model (e.g., Scaden; Menden et al., 2020)

(Figures S9A–S9D). The NN could potentially lead to superior per-

formance in comparison with tree-based methods, but NN re-

quires significant training data and parameter optimization efforts,

which may cause overtraining. The SVR was trained on the RNA

profilesof thesortedcellKassandracompendium,and theScaden

NN was trained on the same artificial mixes as Kassandra and a

scRNA-seq lung cancer dataset because it was primarily devel-

oped using scRNA-seq (Figure S9A; STAR Methods). Both the

SVR and Scaden showed lower Pearson and concordance corre-

lation coefficients between predicted and true cell percentages

(e.g., average r: Kassandra 0.83 versus SVR 0.69 versus Scaden

0.71) and higherMAEs (e.g., Kassandra 4.1 versus SVR 5.5 versus

Scaden 6.8) when tested on validation and holdout datasets

compared with Kassandra (Figures S9B and S9C). Kassandra

also outperformed the Scaden NN trained on scRNA-seq as

shown in a cytometry time of flight validation experiment (e.g.,

average r: Kassandra 0.85 versus Scaden 0.77 and average ccc:

Kassandra 0.64 versus Scaden 0.37; Figure S9D).

Calculation of the limit of detection of Kassandra
Kassandra accurately predicts the RNA levels in a sample as

demonstrated; however, Kassandra was developed for the

enumeration of the correct percentage of a cell type, which relies

on the RNA concentration per cell and, in turn, depends on cell

size (Monaco et al., 2019). Tissue-specific or varied coefficients

can be used to convert RNA levels to cell numbers (Figures 3G).

For some immune subpopulations, we experimentally measured

the RNA per cell-type coefficients relative to T cells (Figures 3H
(H) Pearson correlation of predicted T cell RNA percentage by Kassandra with T ce

TCGA data.

(I) Pearson correlation of predicted plasma B cell RNA percentage by Kassandra w

See also Figures S7 and S12–S16.
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and S10A; STAR Methods). For stromal cells, we hypothesized

the TME qualitatively represents the same cellular phenotypes

across cancer types, so over 10,000 TCGA pan-cancer samples

were used to amend previously defined coefficients (Monaco

et al., 2019; Racle et al., 2017) and obtain values by fitting. For

fitting, random RNA-per-cell coefficient sets were generated,

and for each tumor and cell type, the RNA-per-cell coefficient

set with the best correlation with the ‘‘other’’ cell fraction and

tumor purity obtained from TCGA DNA analysis was chosen

(Figures S10B and S10C; Table S5). For blood subpopulations

where coefficients were not measured, the coefficients were

calculated by fitting to 45 independent FACS experiments (anal-

ogously to ABIS; Monaco et al., 2019) relative to naive Th cells

(Figure S10D; Table S5; STAR Methods).

By creating holdout artificial transcriptomes with low numbers

of total read counts, we tested the Kassandra limit of detection

(LOD) (Figure 3I). The accuracy decreased with coverage under

26 million reads (Figure 3I). The average LOD for cell types was

approximately 0.5%–1% (Figure 3J), depending on the cell

type. Fibroblasts were detected with variability up to 0.3%,

whereas NK cells, which share the expression of multiple genes

with CD8+ T cells (Figure S1A), were reliably detected beginning

at only 1%. False-positive and nonspecific detection by Kassan-

dra was found to be the lowest among all tested approaches,

including CIBERSORT (Newman et al., 2019), EPIC (Racle

et al., 2017), MCP-counter (Becht et al., 2016), and quanTIseq

(Finotello et al., 2019) (Figures 3K, 3L, and S11). To assess spec-

ificity, we used the RNA profiles of one specific cell type, and the

background signal of other cell types was treated as a nonspe-

cific signal (Cossarizza et al., 2019) (Figures 3K and 3L).

Kassandra reconstruction of tumor and healthy tissues
After Kassandra development and training, the cellular composi-

tion of diverse TCGA tumors (Figures 4A and S12) and healthy

tissues (Figures S13A and S13B) was analyzed with Kassan-

dra-Tumor (Figure 4B). The highest proportion of fibroblasts

was observed in pancreatic adenocarcinoma, known to contain

vast amounts of cancer-associated fibroblasts (CAFs) (Norton

et al., 2020). Macrophages, crucial factors in prognosis and

treatment, were predicted to be 10% or more in the TME of glio-

blastoma multiforme and lung adenocarcinoma (Rakaee et al.,

2019). When applying Kassandra to Genotype-Tissue Expres-

sion (GTEx) datasets (GTEx Consortium, 2013), mononuclear

cells were primarily found in blood samples (Figures S13A and

S13B). These results show that deconvolution by Kassandra

identified and enumerated cell types from a diverse array of tis-

sues in the expected ranges.

To calculate the number of tumor-infiltrating lymphocytes (TILs)

in tissue samples, we applied Kassandra to TCGA data with

matching H&E slides, enabling validation via histological review

(Figure 4A) (Saltz et al., 2018). Kassandra deconvolution highly

correlated with H&E-assessed cell types in 13 different cancer

types for a total of 4,035 samples (r > 0.7 for 10/13 analyzed

cancers; Figures 4C, S14, and S15A–S15C). CIBERSORTx,
ll receptor (CDR3 region of TCR) reads byMiXCR (Bolotin et al., 2015) in LUSC

ith B cell receptor (CDR3 region of IgH) reads by MiXCR in TCGA-LUSC data.



Figure 5. Validation of cellular composition deconvolution and TME reconstruction by Kassandra

(A) Schematic representation of a validation experiment comparing bulk RNA-seq and FACS for the same PBMC samples extracted from whole blood.

(B) Pearson correlation and concordance correlation coefficient (ccc) of true RNA percentages for cell-type identification among FACS analysis of PBMCs and

Kassandra predictions from the bulk RNA-seq results.

(legend continued on next page)
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QuanTIseq, and FARDEEP-absolute showed lower Pearson

and concordance correlation values across the cancer types

(Figures S15A–S15C). The Kassandra-predicted tumor purity bet-

ter correlated with the best practice DNA-calculated purity values

than other deconvolution methods (Aran et al., 2015) (Figures 4D,

4E, S7C, and S16).

The proportion of expressed TCR and IgH/L (BCR) sequences

correlate with the presence of T or plasma B cells (Reuben et al.,

2020) actively producing immunoglobulins (Sharonov et al.,

2020). We realigned sequences using MIXCR to characterize

CDR3 transcripts, which are associated with different T and

plasma B cell clones. Kassandra, but not other deconvolution

tools, showed a strong correlation of predicted T cell percent-

ages with the number of identified TCRs within the sample

(Figures 4F and 4H) and plasma B cell percentages with IgH/L

transcripts (Figures 4G and 4I).

Reconstruction of blood cellular composition by
Kassandra
To validate the ability of Kassandra-Blood to predict 38 cell types

derived from blood (Figure 1H), we performed extensive FACS

analysis (Table S6; Figures 5A and S17A) and sequencing of

45 peripheral blood (PB) mononuclear cell (PBMC) or PB

lymphocyte fractions of whole blood from different donors (Fig-

ure 5A). For the majority of cell subpopulations, Pearson correla-

tion coefficients were greater than 0.9 (Figures 5B and S17B),

and for major cell types, overall Pearson and concordance cor-

relation coefficients reached 0.995 (Figure 5C). Other algorithms

showed lower correlation (Figures S18 and S19). Kassandra also

accurately deconvolved 11 novel cell types (e.g., CD27� mem-

ory B cells, non-switched memory B cells, CD57+/� cytotoxic

NK cells, TEMRA, and transitional CD4/CD8+ T cells; r > 0.84;

Figures 5B, S17B, and S19). Even at very low total cellular per-

centages, deconvolved Th and granulocytic subsets had corre-

lations of 0.87 and 0.88, respectively.

Pseudobulk RNA-seq datasets built from nine independent

PBMC scRNA-seq datasets (Avila Cobos et al., 2020) were de-

convolved using Kassandra (Figure S20A; STARMethods). Cells

from scRNA-seq were manually phenotyped (Figure S20B;

STAR Methods), and a significant correlation value (r = 0.97,

p = 8 3 10�52) was obtained when aligning the true scRNA-
(C) Comparison of predicted cell percentages by Kassandra from bulk RNA-seq w

Pearson correlation coefficients (r) and concordance correlation coefficients (cc

assessed by the use of the exact distribution of r (two-tailed test) (p).

(D) Comparison of predicted cell percentages by Kassandra from bulk RNA-seq

Pearson correlation (r) significancewas assessed using a two-tailed test. Mean Pe

are shown. The significance of Pearson correlation (r) to be nonzero was assess

(E) Schematic representation of the workflow of a validation experiment using sc

ficially mixed to create a bulk RNA-seq dataset.

(F) t-SNE plots of cell phenotyping and overall correlation of true scRNA percen

Kassandra from pseudobulk RNA-seq data. Mean Pearson correlation coefficient

of Pearson correlation (r) to be nonzero was assessed by the use of the exact di

(G and H) Scatterplot of true RNA percentages per cell type from scRNA-seq dat

Correlations are shown for different cell subpopulations inmelanoma (G) and lung

a two-tailed test.

(I) Pearson correlation of true cell-type RNA percentage values derived from scRN

RNA-seq data. The median correlation is 0.97.

(J and K) Mean absolute error (MAE) scores (J) and mean Pearson correlation (K

values derived from all analyzed scRNA-seq datasets from (F) for different decon

See also Figures S6, S7, S9, S17–S25, and Tables S6 and S7.
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seq percentages with the Kassandra-predicted cell percentages

from pseudobulk (Figures S20C and S20D). Next, eight indepen-

dent PBMC datasets containing more than 867 samples were

analyzed comparing FACS-based percentages with Kassandra

cell prediction (Figure 5D). Notably, Kassandra-based deconvo-

lution and FACS strongly correlated (r = 0.907–0.988; Figure 5D).

Correlations of 0.97 with FACS were also measured for bone

marrow validation cohorts (GEO: GSE120444; p = 4 3 10�19)

and TIL/CAF mixes (GEO: GSE121127; p = 2 3 10�12; Fig-

ure S20E). Normal lymph node cellular percentages from

CyTOF also strongly correlated with RNA-seq reconstruction

by Kassandra (r = 0.95; Figures S21A–S21C).

Validation of Kassandra TME reconstruction across
different tumor types
To confirm the ability of Kassandra to deconvolve the cell popu-

lations from varied tumor types, we compared Kassandra cell

percentages predictions with scRNA-seq data derived from six

tumor types (Figures 5E, 5F, and S22–S25). Cells from scRNA-

seq were annotated manually (STAR Methods), and RNA from

all cells of each patient was mixed to imitate tumor bulk RNA-

seq (Figure 5E; STAR Methods). Notably, in melanoma and

lung cancer, Kassandra accurately predicted CD4+ T cells

(r = 0.93 and 0.88), T regulatory cells (Tregs; r = 0.92), plasma

(r = 0.91 and 0.82), and non-plasma B cells (r = 0.99 and 0.98;

Figures 5G, 5H, S24B, and S24C), even though these cell types

express overlapping gene signatures. The median correlation of

each cell type reconstruction across the six scRNA-seq datasets

reached 0.97 (Table S7; Figure 5I). Kassandra correctly pre-

dicted the most cell types with the lowest MAEs (Figure 5J)

and strongest correlations (Figures 5K, S7D, and S23) compared

with other deconvolution tools.

To further demonstrate the clinical utility of Kassandra in recon-

structing various tumor types, we tested its ability to accurately

reconstruct the TME using primary early-stage non-small cell

lung carcinoma (NSCLC) and clear cell renal cell carcinoma

(ccRCC) tumors of varying grades collected in a clinical setting.

NSCLC tumor samples were processed for bulk RNA-seq and

CyTOF analysis.We performedRNA-seq of the same cellular sus-

pensions prepared for CyTOF usingmore than 40 cellularmarkers

(Figures 6A, 6B, S26A, and S26B). Kassandra strongly correlated
ith actual cell percentages obtained by flow cytometry measurements. Mean

c) are shown. The significance of Pearson correlation (r) to be nonzero was

with actual cell percentages obtained by flow cytometry measurements. The

arson correlation coefficients (r) and concordance correlation coefficients (ccc)

ed by the use of the exact distribution of r (two-tailed test) (p).

RNA-seq samples from PBMCs and solid tumors. scRNA-seq data were arti-

tage values derived from scRNA-seq data with deconvolution predictions by

s (r) and concordance correlation coefficients (ccc) are shown. The significance

stribution of r (two-tailed test) (p).

a with Kassandra deconvolution predictions from artificial bulk RNA-seq data.

cancer (H) from (F). The Pearson correlation (r) significancewas assessed using

A-seq data (F) with deconvolution predictions by Kassandra from pseudobulk

) values between predicted values from artificial bulk RNA-seq data with true

volution algorithms.



Figure 6. Validation of microenvironment deconvolution and applicability of Kassandra for immunotherapy response prediction

(A) Schematic representation of a validation experiment using bulk RNA-seq and CyTOF from the same lung adenocarcinoma biopsies.

(B) t-SNE plot of cell phenotyping from CyTOF of lung adenocarcinoma samples.

(C) Correlation of cell percentages measured by CyTOF (n = 7) with cell percentages predicted by Kassandra from bulk RNA-seq of the same NSCLC biopsies.

Pearson correlations values were calculated for all cell subtypes combined.

(D) Correlation of cell-type percentages measured by CyTOF with cell percentages predicted by Kassandra from bulk RNA-seq.

(E) Schematic representation of a validation experiment using bulk RNA-seq, CyTOF, and MxIF of the same ccRCC biopsies.

(F) t-SNE plot of cell phenotyping by CyTOF analysis of the ccRCC samples.

(G) Correlation of cell percentages measured by CyTOF (n = 8) with cell percentages predicted by Kassandra from bulk RNA-seq.

(H) Multiplex immunofluorescence (MxIF) images (20 markers) of ccRCC samples with cell segmentation and typing.

(I) Correlation of immune and endothelial cell percentages measured by MxIF (n = 28) with Kassandra predictions from bulk-RNA seq of the same tissue region.

The Pearson correlation (r) significance was assessed using a two-tailed test.

(J) Schematic representation of associations of immune cell composition determined via deconvolution of whole blood bulk RNA-seq (n = 1,750) with aging.

(K) Boxplots showing the Kassandra-predicted percentages of naive CD8 T cells (left) and monocytes (right) in blood samples collected from patients at different

ages. The numbers of patients in each age group are indicated above the corresponding boxplots. Each data point corresponds to a predicted cell population

fraction for a single sample. The boxes in the boxplots represent the IQR, where the center lines depict the median. The upper whiskers indicate the maximum

values or 75th percentile +1.5 IQR; the lower whiskers indicate the minimum values or 25th percentile �1.5 IQR.

(legend continued on next page)
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with CyTOF detection of T and B cell, neutrophil, macrophage,

Treg, NK cell, endothelial cell, and fibroblast populations (r =

0.907, p = 2 3 10�44) compared with other approaches

(Figures 6C, 6D, and S26D). Kassandra predicted the presence

of low-abundance cell types in this dataset, such as NK cells,

monocytes, endothelial cells, and fibroblasts; however, with the

exception of fibroblasts, the correlation with CyTOF was lower

comparedwith abundant cell populations (r = 0.6–0.8) (Figure 6D).

The ccRCC patient samples were collected and processed for

comparative bulkRNA-seq andCyTOF (Figure 6E). t-SNEanalysis

showedonly immunecells (ICs)wereefficiently recovered from the

tumor samples (Figure 6F), and Kassandra accurately predicted

the immune populations in the ccRCC samples with the strongest

correlation (r = 0.937, p = 33 10�48; Figures 6G and S26E).

Moreover, multiplex immunofluorescence (MxIF) provided

spatial analysis of 28 ccRCC samples withmore than 10 tissue re-

gionsof interest (ROIs) (Figure6E). IntratumoralROIswereselected

for comparison, and cell segmentationwasperformedonMxIF im-

ages (Jackson et al., 2020; Pachynski et al., 2021) to reconstruct

single-cell proteomic data (Figure 6H). Mean fluorescent intensity

within a cell segment was used for cell typing, and the proportions

of macrophages, CD8+ T cells, NK cells, and B cells were signifi-

cantly similar to the Kassandra-predicted percentages from

RNA-seq (r=0.7–0.8,p<0.0001; Figures6I andS26C). The relative

amount of blood vessels within a tissue was calculated as an area

of CD31marker because of the intricate shape of endothelial cells

causing segmentation difficulty. Nevertheless, the endothelial cell

area correlated with predicted endothelial cell percentages from

RNA-seq (r = 0.731, p = 0.00001; Figure 6I).

As mentioned, to make Kassandra stable against cancer-spe-

cific noise and expression, we added both cancer cell lines and

sorted malignant cells to the artificial transcriptomes (STAR

Methods). The t-SNE plot shows the partial overlap of their

expression profiles (Figure S27A,B). Kassandra was not in-

tended to predict exact tumor purity and outputs the ‘‘other’’

fraction with all uncharacterized cells (including cancer cells).

To address the stability of Kassandra, previously unseen cancer

cell lines (e.g., COLO829, MCF7, and K562) were admixed with

PBMCs at different ratios ranging from 100:0 to 12:88 (cell line:

PBMC). Kassandra reconstructed the percentages of all non-

malignant IC types from PBMCs in correct proportions in all

mixes and ratios despite low mRNA content from the PBMCs

(Figure S27). Moreover, the percentages of ‘‘other’’ previously

unseen cell types were calculated with the overall Pearson cor-

relation coefficient of 0.94 (p < 0.001).

The application of Kassandra to measure blood immune
composition of archival samples
The ability to perform scRNA-seq or flow cytometry on archived

blood samples is often limited because of multiple factors
(L) Schematic representation of comparison of deconvolution of bulk RNA-seq w

(M) The association of immune cell composition and immunotherapy response a

(N) Boxplots showing the level of PD-1+ CD8+ T cells in bladder cancer, gastric ca

levels represented as the percentage of positive tumor area. The boxes in the bo

whisker indicates the maximum value or 75th percentile +1.5 IQR; the lower whi

(O) Receiver operating characteristics of the Kassandra-predicted PD-1+ CD8+ T

(P) Heatmap of the significance of the denoted cell types to immunotherapy resp

See also Figures S9 and S26–S29.
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(Zheng et al., 2017). To demonstrate that Kassandra can provide

value to samples unsuitable for other analyses, we collected

whole blood and PBMC RNA-seq profiles of 1,750 healthy do-

nors from multiple studies for which multicolor flow cytometry

was not performed (Figure 6J). Kassandra-Blood digitally pro-

filed the immune composition of the blood samples to reveal

additional clinical associations from this metacohort analysis

related to aging. For example, the naive CD8+ T cell population

significantly decreased with age, while the monocyte percent-

age increased with age as previously observed (Britanova

et al., 2014, 2016) (Figure 6K), supporting the application of Kas-

sandra on archival samples for hypothesis validation and to infer

novel findings in tissue samples where conventional cytometry

methods were unsuitable.

The Kassandra-reconstructed TME predicts PD-L1
immunohistochemistry (IHC) status and correlates with
response to immunotherapy
Upregulation of PD-L1 expression within the tumor is heavily

dependent on the specific immune suppressive context of the

TME. In particular, macrophages express PD-L1 to suppress

T cells via the PD-1/PD-L1 axis (Liu et al., 2020; Wei et al.,

2019). We correlated Kassandra-Tumor deconvolution of the

TME with PD-L1 IHC to predict PD-L1 status, an important ther-

apy-associated biomarker (Morsch et al., 2020), or therapy

response, potentially providing a complementary method to pre-

dict immunotherapy response with RNA-seq (Figures 6L and

6M). In addition, this analysis would assess whether microenvi-

ronment composition can predict PD-L1 status. For the bladder

cancer discovery cohort (Mariathasan et al., 2018) and the

bladder cancer (Mariathasan et al., 2018), gastric cancer (Kim

et al., 2018), and ccRCC validation cohorts, all tested indepen-

dently, deconvolved PD-1+ CD8+ T cells significantly correlated

with PD-L1 IC IHC levels represented as the percentage of the

positive tumor area: IC2+: R5% PD-L1; IC1: R1% but <5%

PD-L1; and IC0: <1% PD-L1 (p < 0.001; Figures 6N, S28A, and

S28B). A regression model was trained on RNA-seq from

the bladder cancer cohort (Mariathasan et al., 2018) to predict

PD-L1 IHC status (Figure 6L). The percentage of PD-1+ CD8+

T cells was assessed in additional tumor types and correlated

with PD-L1 IC status in bladder cancer, gastric cancer, and

ccRCC (Figure 6O). The generated TME regression model inde-

pendently predicted PD-L1 status with 0.92, 0.87, and 0.82 area

under the curve (AUC) performances scores in the validation

cohorts (Figures 6O and S28C–S28E).

Beyond the correlation between PD-L1 IHC and PD-1+ CD8+

T cell percentages, the relationship between TME deconvolution

and response to immunotherapy was examined in bladder cancer

(anti-PD-L1) (Mariathasan et al., 2018), gastric cancer (anti-PD-1)

(Kim et al., 2018), ccRCC (anti-PD-L1, anti-PD-L1+BEVA)
ith PD-L1 IHC status.

cross different cohorts.

ncer, and ccRCC cohorts stratified by PD-L1 immune cell (IC) immunostaining

xplots represent the IQR, where the center lines depict the median. The upper

sker indicates the minimum value or 25th percentile �1.5 IQR.

cells with PD-L1 IHC status for the three validation cohorts from (N).

onse across the listed cohorts.
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(Pal et al., 2020), melanoma (anti-PD-1) (Gide et al., 2019; Hugo

et al., 2016; Liu et al., 2019b), and anti-CTLA-4 (Nathanson et al.,

2017; Van Allen et al., 2015) cohorts (Figures S29A–S29D, J).

Notably, Cox proportional hazard models showed that the ratios

of PD-1+ CD8+ T cells to all T cells were significantly associated

with immunotherapy responders in all cohorts independently of

TMB and PD-L1 expression values (Figures 6P and S29E–S29I).

ML-based response prediction models that combined Kassan-

dra-reconstructedTMEpercentages and TMBandPD-L1 expres-

sion demonstrated greater predictive power in comparison with

singlemetrics when trainingwith cross-validationwas applied, re-

sulting in improved performance characteristics on the unseen

melanoma cohort (receiver operating characteristics [ROC] AUC

0.64 [TMB] to 0.75 [Kassandra + TMB +PD-L1; Figure S29J), indi-

cating deconvolution could be applied to increase the accuracy of

immunotherapy response predictive models.

DISCUSSION

We developed the decision tree ML-based algorithm Kassandra

to reconstitute the cellular composition of both tumor biopsies

and blood using bulk RNA-seq. An extensive database contain-

ing RNA-seq data of more than 9,400 sorted samples of various

cell populations was compiled and employed to create artificial

transcriptomes to train and develop Kassandra. This compre-

hensive manually harmonized compendium of sorted cell types

provides an extensive resource of RNA expression data. Kas-

sandra training on this comprehensive database enabled the ac-

curate prediction of cell percentages of new RNA-seq samples

without pre-education on scRNA-seq or other experimental

data. In addition, unlike NNmodels (Menden et al., 2020), the de-

cision treemodel provides predictive behavior of the final predic-

tions and allows the analysis of important genes via feature

importance estimation. The use of NNmight lead to superior per-

formance in comparison with tree-based methods; however, in

our experience, NN requires substantial training data and optimi-

zation efforts. In initial tests, the NN model exhibited more over-

training behavior, highlighting the value of a more stable and pre-

dictable decision tree model.

Kassandra deciphered cellular proportions even when chal-

lenged with mixtures containing phenotypically similar cell types

using a biology- and bioinformatics-driven approach to select

genes uniquely expressed in certain cell types. In contrast with

earlier described deconvolution methods, Kassandra does not

use a gene set enrichment analysis (GSEA)-like approach (xCell

(Aran et al., 2017), MCP-counter (Becht et al., 2016)), least

square linear optimization (Finotello et al., 2019; Hao et al.,

2019; Monaco et al., 2019; Racle et al., 2017), or linear matrix-

based methods (Newman et al., 2015, 2019; Wang et al.,

2019). Rather, Kassandra divides samples into subpopulations

based on significant differentiation in input variables, leading to

superior accuracy (r < 0.97, p < 10�10) and stable performance

in variousmalignant tissues.We also used a two-step training ar-

chitecture that allows the use of maximum information from

different levels of the cellular hierarchy. Finally, we established

a coefficient that converts the RNA levels to absolute cell

numbers because different cell types contain different amounts

of RNA, and this coefficient allows quantitative analysis of the

cellular components of any given tissue, enabling the compari-
son of different samples. Kassandra is a tissue agnostic algo-

rithm that uses a tissue agnostic transformation coefficient that

accurately predicts cell percentages in different tissues.

The addition of functional and technical noise to the artificial

transcriptomes used to train Kassandra resulted in the success-

ful management of the noise observed in real samples. Indeed,

excluding noise from the final Kassandra algorithm, aberrant

cancer cell expression, and the second-stage model resulted

in decreased performance. Moreover, Kassandra can be further

optimized and improved by simple retraining on an extended da-

taset in the future, which would increase the overall accuracy of

predictions and account for additional cell states.

This tree-based comprehensive approach allowed Kassan-

dra to identify 18 TME subpopulations in the examined tissues

and 41 populations derived from PBMCs, resulting in a total of

51 unique cell types that can be identified from bulk RNA-seq

data, including Th subsets, which are notoriously difficult to

deconvolve. Accurate recognition of this diverse cellular

repertoire remains unparalleled compared with other plat-

forms, such as CIBERSORT, ABIS, and EPIC, which were de-

signed to deconvolve IC populations, and MCP-counter and

quanTIseq, which can also recognize fibroblasts and endothe-

lial cells. Kassandra can precisely deconvolve many cell

types, including CD4+ and CD8+ T subpopulations (Tregs,

PD-1+ cells), relevant for predicting immunotherapy response.

Using Kassandra, we found a positive correlation of PD-1+

CD8+ T cells with PD-L1 IHC levels, a clinical biomarker of

immunotherapy response, and combining Kassandra with

TMB and PD-L1 expression status improved immunotherapy

response prediction. The universal approach used for the

development of Kassandra can be applied to any cell type

based on its unique RNA profile; therefore, future application

of this workflow can precisely predict diverse cell types,

such as epithelial and glandular cells, glial cells, neurons,

and other cell types integral to a wide array of pathologies.

This computational tool could lead to an improved and more

comprehensive understanding of biology in archival samples

that have only RNA-seq data available, ultimately supporting

clinical applications for diverse diseases in the future.
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Mouse Anti-Human CD56-PE-Dazzle 594, clone: 5.1H11,

cat#:362544

Biolegend RRID: AB_2565922

Mouse Anti-Human CD11c-PE-Cy7, clone: 3.9, cat#:301607 Biolegend RRID: AB_389350

Mouse Anti-Human CD19-PE-Cy5, clone: HIB19, cat#:302210 Biolegend RRID: AB_314240

Mouse Anti-Human FcεR1-Alexa Flour 488, clone: AER-37,

cat#:334640

Biolegend RRID: AB_2721290

Mouse Anti-Human CD10-BB700, clone: MEM-78, cat#:746101 BD Biosciences RRID: AB_2743472

Mouse Anti-Human CD125-BV421, clone: A14, cat#:743927 BD Biosciences RRID: AB_2741855

Mouse Anti-Human CD16-BV650, clone: 3G8, cat#:302042 Biolegend RRID: AB_2563801

Mouse Anti-Human CD64-BV711, clone: 10.1, cat#:305042 Biolegend RRID: AB_2800778

Mouse Anti-Human CCR3-PE-Dazzle 594, clone: 5E8, cat#:310728 Biolegend RRID: AB_2687007

Mouse Anti-Human CD117-PE-Cy7, clone: 104D2, cat#:313211 Biolegend RRID: AB_893228

Mouse Anti-Human CD3-PE-Cy5, clone: HIT3a, cat#:300310 Biolegend RRID: AB_314046

Mouse Anti-Human CD56-PE-Cy5, clone: 5.1H11, cat#:362516 Biolegend RRID: AB_2564089

Mouse Anti-Human CD14-PE-Cy5, clone: M5E2, cat#:301864 Biolegend RRID: AB_2860767

Mouse Anti-Human CD14-Alexa Flour 488, clone: M5E2,

cat#:301811

Biolegend RRID: AB_493159

Mouse Anti-Human CD9-BB700, clone: M-L13, cat#:745827 BD Biosciences RRID: AB_2743276

Mouse Anti-Human CD16-BV421, clone: 3G8, cat#:562874 BD Biosciences RRID: AB_2716865

Mouse Anti-Human CD3-BV510, clone: OKT3, cat#:317332 Biolegend RRID: AB_2561943

Mouse Anti-Human CCR3-BV510, clone: 5E8, cat#:310722 Biolegend RRID: AB_2571977

Mouse Anti-Human CD19-BV510, clone: HIB19, cat#:302242 Biolegend RRID: AB_2561668

Mouse Anti-Human CD7-BV510, clone: M-T701, cat#:563650 BD Biosciences RRID: AB_2713913

Mouse Anti-Human FcεR1-BV605, clone: AER-37, cat#:334628 Biolegend RRID: AB_2566506

Mouse Anti-Human CD33-BV711, clone: WM53, cat#:303424 Biolegend RRID: AB_2565775

Mouse Anti-Human CD84-PE, clone: CD84.1.21, cat#:326008 Biolegend RRID: AB_2229003

Mouse Anti-Human CD15-PE-dazzle 594, clone: W6D3,

cat#:323038

Biolegend RRID: AB_2564103

Mouse Anti-Human CD169-PE-Cy7, clone: 7-239, cat#:346014 Biolegend RRID: AB_2750264

Mouse Anti-Human CD206-PE-Cy5, clone: 15-2, cat#:321108 Biolegend RRID: AB_571919

Mouse Anti-Human CD1c-BV421, clone: L161, cat#:331525 Biolegend RRID: AB_10933249

Mouse Anti-Human CD15-BV510, clone: W6D3, cat#:563141 BD Biosciences RRID: AB_2738025

Mouse Anti-Human CD19-BV510, clone: SJ25C1, cat#:363020 Biolegend RRID: AB_2564229

Mouse Anti-Human CCR3-BV510, clone: 5E8, cat#:310721 Biolegend RRID: AB_2571976

Mouse Anti-Human CD16-BV711, clone: 3G8, cat#:302044 Biolegend RRID: AB_2563802

Mouse Anti-Human CLEC9A-PE, clone: 8F9, cat#:353804 Biolegend RRID: AB_10965546

Mouse Anti-Human CD141-PE-Dazzle 594, clone: M80,

cat#:344120

Biolegend RRID: AB_2687144
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Mouse Anti-Human CD19-BB515, clone: HIB19, cat#:564456 BD Biosciences RRID: AB_2744309

Mouse Anti-Human IgD-BB700, clone: IA6-2, cat#:566538 BD Biosciences RRID: AB_2744486

Mouse Anti-Human CD138-BV421, clone: MI15, cat#:356515 Biolegend RRID: AB_2562659

Mouse Anti-Human CD13-BV510, clone: WM15, cat#:740162 BD Biosciences RRID: AB_2739915

Mouse Anti-Human IgG-BV605, clone: G18-145, cat#:563246 BD Biosciences RRID: AB_2738092

Mouse Anti-Human CD39-BV650, clone: TU66, cat#:563681 BD Biosciences RRID: AB_2738370

Mouse Anti-Human CD24-BV711, clone: ML5, cat#:311136 Biolegend RRID: AB_2566579

Mouse Anti-Human CD10-BV786, clone: HI10a, cat#:564960 BD Biosciences RRID: AB_2739025

Goat Anti-Human IgA-PE, polyclonal, cat#: 2050-09 Southern Biotech RRID: AB_2795707

Mouse Anti-Human IgM-PE-Dazzle 594, clone: MHM-88,

cat#:314529

Biolegend RRID: AB_2566482

Mouse Anti-Human CD27-PE-Cy7, clone:M-T271, cat#:356412 Biolegend RRID: AB_2562258

Mouse Anti-Human CD38-PE-Cy5, clone:HIT2, cat#:303508 Biolegend RRID: AB_314360

Mouse Anti-Human CD45-BB515, clone:H130, cat#:564585 BD Biosciences RRID: AB_2732068

Mouse Anti-Human NKp44-BB700, clone:p44-8 BD Biosciences cat#:624381

Mouse Anti-Human CD123-BV510, clone:6H6, cat#:306022 Biolegend RRID: AB_2562068

Mouse Anti-Human NKG2A-BV605, clone:131411, cat#:747921 BD Biosciences RRID: AB_2872382

Mouse Anti-Human CD158-BV650, clone:HP-MA4 BD Biosciences cat#:752506

Mouse Anti-Human NKG2C-BV711, clone:134591, cat#:748164 BD Biosciences RRID: AB_2872625

Mouse Anti-Human CD57-BV786, clone:QA17A04, cat#:393329 Biolegend RRID: AB_2860967

Mouse Anti-Human CD161-PE, clone:HP-3G10, cat#:339904 Biolegend RRID: AB_1501083

Mouse Anti-Human NKG2D-PE-Cy7, clone:1D11, cat#:320812 Biolegend RRID: AB_2234394

Mouse Anti-Human CD107a-PE-Cy5, clone:eBioH4A3,

cat#:15-1079-42

ThermoFisher Scientific RRID: AB_10547280

Mouse Anti-Human CD27-BB515, clone:M-T271, cat#:564643 BD Biosciences RRID: AB_2744354

Mouse Anti-Human CD8-BB700, clone:RPA-T8, cat#:566452 BD Biosciences RRID: AB_2744459

Mouse Anti-Human gdTCR-BV421, clone:11F2, cat#:744870 BD Biosciences RRID: AB_2742548

Mouse Anti-Human CD3-BV605, clone:OKT3, cat#:317322 Biolegend RRID: AB_2561911

Mouse Anti-Human iNKT-BV650, clone:6B11, cat#:744000 BD Biosciences RRID: AB_2741919

Mouse Anti-Human TCR Vd2-BV711, clone:B6, cat#:331412 Biolegend RRID: AB_2565421

Mouse Anti-Human TCR Va7.2-PE-Cy7, clone:3C10, cat#:351712 Biolegend RRID: AB_2561994

Mouse Anti-Human CD45RA-PE-Cy5, clone:HI100, cat#:304110 Biolegend RRID: AB_314414

Mouse Anti-Human CXCR3-BV421, clone:G025H7, cat#:353716 BD Biosciences RRID: AB_2561448

Mouse Anti-Human CD4-BV510, clone:L200, cat#:563094 BD Biosciences RRID: AB_2738001

Mouse Anti-Human CD62L-BV650, clone:DREG-56, cat#:304832 Biolegend RRID: AB_2563821

Mouse Anti-Human CD95-BV711, clone:DX2, cat#:305644 Biolegend RRID: AB_2632623

Mouse Anti-Human CX3CR1-PE, clone:2A9-1, cat#:341604 Biolegend RRID: AB_1595456

Mouse Anti-Human PD-1-PE-Dazzle 594, clone:EH12.2H7,

cat#:329940

Biolegend RRID: AB_2563659

Mouse Anti-Human CXCR5-PE-Cy7, clone:J252D4, cat#:356924 Biolegend RRID: AB_2562355

Mouse Anti-Human ICOS-BB515, clone:DX29, cat#:564549 BD Biosciences RRID: AB_2738840

Mouse Anti-Human Tim3-BV421, clone:F38-2E2, cat#:345008 Biolegend RRID: AB_11218598

Mouse Anti-Human gdTCR-BV510, clone:11F2, cat#:745026 BD Biosciences RRID: AB_2742655

Mouse Anti-Human CD27-BV711, clone:M-T271, cat#:356430 Biolegend RRID: AB_2650751

Mouse Anti-Human Lag3-BV786, clone:11C3C65, cat#:369322 Biolegend RRID: AB_2716127

Mouse Anti-Human TIGIT-PE, clone:A15153G, cat#:372704 Biolegend RRID: AB_2632730

Mouse Anti-Human CD39-PE-Cy7, clone:A1, cat#:328212 Biolegend RRID: AB_2099950

Mouse Anti-Human CD4-BB515, clone:RPA-T4, cat#:564419 BD Biosciences RRID: AB_2744419

Mouse Anti-Human CCR6-BB700, clone:11A9, cat#:746139 BD Biosciences RRID: AB_2743501
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Mouse Anti-Human CXCR3-BV421, clone:1C6/CXCR3,

cat#:562558

BD Biosciences RRID: AB_2737653

Mouse Anti-Human CD8-BV510, clone:RPA-T8, cat#:301048 Biolegend RRID: AB_2561942

Mouse Anti-Human CD45RA-BV786, clone:HI100, cat#:304140 Biolegend RRID: AB_2563816

Mouse Anti-Human IL-7RA-PE, clone:A019D5, cat#:351340 Biolegend RRID: AB_2564136

Mouse Anti-Human CCR4-PE-Dazzle 594, clone:L291H4,

cat#:359420

Biolegend RRID: AB_2564095

Mouse Anti-Human CD25-PE-Cy5, clone:BC96, cat#:302608 Biolegend RRID: AB_314278

Mouse Anti-Human CTLA-4-BB515, clone:BNI3, cat#:566918 BD Biosciences RRID: AB_2869947

Mouse Anti-Human CD4-BB700, clone:L200, cat#:566479 BD Biosciences RRID: AB_2739738

Mouse Anti-Human CD25-BV421, clone:BC96, cat#:302630 Biolegend RRID: AB_11126749

Mouse Anti-Human CD8-BV510, clone:RPA-T8, cat#:563256 BD Biosciences RRID: AB_2738101

Mouse Anti-Human CD3-BV605, clone:UCHT1, cat#:300460 Biolegend RRID: AB_2564380

Armenian Hamster Anti-Human ICOS-BV650, clone:C398.4A,

cat#:313550

Biolegend RRID: AB_2749929

Mouse Anti-Human Lag3-BV786, clone:11C3C65, cat#:369322 Biolegend RRID: AB_2716127

Mouse Anti-Human CD127-PE-CF594, clone:HIL-7R-H21,

cat#:562397

BD Biosciences RRID: AB_11154212

Mouse Anti-Human CD4-APC-H7, clone:RPA-T4, cat#:560158 BD Biosciences RRID: AB_1645478

Mouse Anti-Human CRTH2-R718, clone:BM16, BD Biosciences cat#:751948

Mouse Anti-Human CCR10-APC, clone:IB10, cat#:564771 BD Biosciences RRID: AB_2738943

Mouse Anti-Human Tim3-Alexa Flour 647, clone:7D3, cat#:565559 BD Biosciences RRID: AB_2744367

Mouse Anti-Human CD39-APC-FIRE750, clone:A1, cat#:328230 Biolegend RRID: AB_2650839

Mouse Anti-Human CD27-BV786, clone:O323, cat#:302832 Biolegend RRID: AB_2562674

Mouse Anti-Human CD69-APC-R700, clone:FN50, cat#:565154 BD Biosciences RRID: AB_2744449

Mouse Anti-Human NKp80-PE, clone:5D12, cat#:566329 BD Biosciences RRID: AB_2739689

Mouse Anti-Human CD14-PE-CF594, clone:MɸP9, cat#:562335 BD Biosciences RRID: AB_11153663

Mouse Anti-Human CD169-APC, clone:7-239, cat#:346008 Biolegend RRID: AB_11147948

Mouse Anti-Human CD13-BV711, clone:WM15, cat#:301722 Biolegend RRID: AB_2687015

Mouse Anti-Human CD10-BV786, clone:HI10A, cat#:564960 BD Biosciences RRID: AB_2739025

Mouse Anti-Human HLA-DR-APC-FIRE750, clone:LN2,

cat#:327024

Biolegend RRID: AB_2810492

Mouse Anti-Human CD36-PE-Cy7, clone:5-271, cat#:336222 Biolegend RRID: AB_2716142

Mouse Anti-Human CD11c-Alexa Flour 700, clone:B-ly6,

cat#:561352

BD Biosciences RRID: AB_10612006

Mouse Anti-Human CD3-Alexa Flour 488, clone:UCHT1,

cat#:300415

Biolegend RRID: AB_389310

Mouse Anti-Human CCR4-BV605, clone:L291H4, cat#:359418 Biolegend RRID: AB_2562483

Unlabeled Normal Mouse IgG, cat#: 0107-01 Southern Biotech RRID: AB_2732898

Human TrueStain FcX, cat#: 422302 Biolegend RRID: AB_2818986

Insulin solution human CAS No.11061-68-0 Sigma Sigma CAS No.11061-68-0

Biological samples

Whole blood from healthy donors, collected in K2-EDTA

vacutainers (Purple top)

Research Blood

Components

Item#: 016-018

ccRCC biopsies James Hsieh

NSCLC biopsies Mark Poznansky

Throat biopsies Leandro Cerchietti

Chemicals, peptides, and recombinant proteins

Brilliant stain buffer, cat#:566385 BD Biosciences RRID: AB_2869761

Monocyte Blocker Biolegend cat#:426103
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ImmunoCult� Human CD3/CD28 T Cell Activator Stem Cell Technologies cat#:10971

SYTOX� Red Dead Cell Stain ThermoFisher Scientific cat#:S34859

ViaStain� AOPI Staining Solution Nexcelom cat#:CS2-0106

Ghost Dye Violet 510 Viability Dye Tonbo Biosciences cat#:13-0870-T100

CytoFIX/CytoPERM BD Biosciences cat#:554722

Ficoll-Paque PLUS Cytiva cat#:17144003

CryoStor-CS10 BioLife Solutions cat#:210102

Newborn Calf Serum MiliporeSIGMA cat#:N4762

Fetal Bovine Serum Corning cat#:35-011-CV

Ethylenediaminetetraacetic acid (EDTA) 0.5M ThermoFisher Scientific cat#:15575-038

Penicillin-Streptomycin-Glutamine (100X) ThermoFisher Scientific cat#:10378016

RPMI Medium 1640 (1X) ThermoFisher Scientific cat#:11875-093

IMDM, no phenol red ThermoFisher Scientific cat#:21056023

CellGenix� T Cell Medium GMP-Prototype CellGenix cat#:24814-0500

Phosphate Buffered Saline (1X) ThermoFisher Scientific cat#:20021-027

Critical commercial assays

EasySep� Human CD4+ T Cell Enrichment Kit, Stem Cell Technologies cat#:19052

EasySep� Human Basophil Isolation Kit Stem Cell Technologies cat#:17969

EasySep� Human Pan-DC Pre-Enrichment Kit Stem Cell Technologies cat#:19251

RosetteSep� Human Granulocyte Depletion Cocktail Stem Cell Technologies cat#:15664

RosetteSep� Human CD8+ T Cell Enrichment Cocktail Stem Cell Technologies cat#:15063

RosetteSep� Human NK Cell Enrichment Cocktail Stem Cell Technologies cat#:15065

RosetteSep� Human CD4+ T Cell Enrichment Cocktail Stem Cell Technologies cat#:15065

Universal Mycoplasma Detection Kit ATCC cat#: 30-1012K

Deposited data

Sorted cell compendium of RNA profiles This paper https://science.bostongene.com/

kassandra/

Sequenced raw RNA-seq data of cellular subpopulations This paper EGA: EGAS00001006272

Full list of datasets used for training Kassandra-Tumor Table S8

The list of datasets used to train Kassandra-Blood Table S8

Full list of holdout datasets Table S8

The list of whole blood RNA-Seq datasets Table S8

Anti-PDL-1-treated bladder cancer Mariathasan et al., 2018 EGA: EGAS00001002556

Anti-PD-L1-treated gastric cancer Kim et al., 2018 ERP107734

ccRCC immotion150 Pal et al., 2020 EGA: EGAC00001000946

Anti-CTLA-4-treated melanoma Van Allen et al., 2015 dbGAP: phs000452

Anti-CTLA-4-treated melanoma Nathanson et al., 2017 SRA: SRP067586

Anti-PD-1+ anti-CTLA-4 or anti-PD-1-treated melanoma Gide et al., 2019 ENA: ERP105482

Anti-PD-1-treated metastatic melanoma Liu et al., 2019b dbGAP: phs001036

Anti-PD-1-treated melanoma Hugo et al., 2016 GEO: GSE78220, GEO: GSE96619

Melanoma scRNA-seq validation dataset Tirosh et al., 2016 GEO: GSE72056

Head and neck carcinoma scRNA-seq validation dataset Puram et al., 2017 GEO: GSE103322

Glioblastoma scRNA-seq validation dataset Neftel et al., 2019

PBMC scRNA-seq validation datasets 10X Genomics

PBMC scRNA-seq validation dataset Zheng et al., 2017

Lung cancer scRNA-seq validation datasets Lambrechts et al., 2018 ArrayExpress: E-MTAB-6149,

ArrayExpress: E-MTAB-6653

Ovarian cancer scRNA-seq validation datasets Izar et al., 2020 GEO: GSE146026

B-cell lymphoma scRNA-seq validation dataset Roider et al., 2020

(Continued on next page)
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Flow cytometry validation datasets Monaco et al., 2019;

Flow cytometry validation datasets Finotello et al., 2019

Flow cytometry validation datasets Newman et al., 2019

Flow cytometry validation datasets Linsley et al., 2014

Flow cytometry validation datasets Hoek et al., 2015

Flow cytometry validation datasets Zimmermann et al.,

2016

Experimental models: Cell lines

K562 Chronic Myelogenous Leukemia, Lymphoblast,

cat#: CCL-243

ATCC CVCL_0004

COLO829, skin fibroblast, cat: CRL-1974 ATCC CVCL_1137

MCF7, epidermal adenocarcinoma, cat#:HTB-22 ATCC CVCL_003

Software and algorithms

Kassandra code This paper https://github.com/BostonGene/Kassandra

scikit-learn Pedregosa et al., 2011 https://github.com/scikit-learn/scikit-learn

Pandas McKinney, 2011 https://github.com/pandas-dev/pandas

scipy Virtanen et al., 2020 https://github.com/scipy/scipy

numpy - https://github.com/numpy/numpy

matplotlib Hunter, 2007

pyyaml - https://github.com/yaml/pyyaml

matplotlib - https://github.com/matplotlib/matplotlib

networkx Hagberg et al., 2008 https://github.com/networkx

lightgbm Ke et al., 2017 https://github.com/microsoft/LightGBM

ABIS Monaco et al., 2019 https://github.com/giannimonaco/ABIS

EPIC Racle et al., 2017 https://github.com/GfellerLab/EPIC/

releases/tag/v1.1

CIBERSORT Newman et al., 2015 https://cibersort.stanford.edu/

CIBERSORTx Newman et al., 2019 https://cibersortx.stanford.edu/

QuanTIseq Finotello et al., 2019 https://icbi.i-med.ac.at/software/

quantiseq/doc/index.html#quanTIseq

xCell Aran et al., 2017 https://github.com/dviraran/xCell

FARDEEP Hao et al., 2019 https://github.com/YuningHao/

FARDEEP.git

MCP-counter Becht et al., 2016 https://github.com/ebecht/MCPcounter

Scaden Menden et al., 2020 https://github.com/KevinMenden/scaden

Other

BD FACSAria� III Cell Sorter BD Biosciences Part #: 648282C2

BD FACSCelesta� Cell Analyzer BD Biosciences Part #: 660345

NovaSeq 6000 Illumina Ref.#: 20012850
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RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to and will be fulfilled by the lead contact, Nathan Fowler (nfowler@

mdanderson.org).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
The analyzed data and the training data are available at our openwebsite at https://science.bostongene.com/kassandra/ and https://

github.com/BostonGene/Kassandra. Additionally, sequenced raw RNA-seq data of cellular subpopulations is deposited EGA:

EGAS00001006272, a link to EGA dataset will also be available at https://science.bostongene.com/kassandra/). ccRCC, lung,

and lymphoma datasets analyzed in this report will be made available upon reasonable request. A user-friendly web-based Kassan-

dra tool at https://science.bostongene.com/kassandra/ was developed. With this tool, the user can upload available RNA-seq data

and employ Kassandra-based deconvolution to their own data as well as supplied RNA-seq data as a test file. We have also depos-

ited all code at https://github.com/BostonGene/Kassandra.

Accessions for the datasets used in this study are listed in Table S8.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Cell culture

MCF-7, K562, andColo829 cell lines were all purchased fromATCC. K562 andColo829were cultured in RPMI-1640with Glutamax-I,

10 mM HEPES, 100 U penicillin and 0.1 mg streptomycin, and 10% v/v heat inactivated fetal bovine serum (FBS, Corning, Corning,

NY, USA). MCF-7 cells were cultured in EMEMwith L-glutamine, 10 mg/mL insulin (BioXtra, Regina, SK, Canada), 100 U penicillin and

0.1 mg streptomycin, and 10% v/v FBS. All cells at 37�C in 5% CO2 K562 were grown in suspension in upright T-75 flasks (Corning)

and passaged 1:8 every 3 days before harvesting. MCF-7 and Colo829 were grown in 100 cm tissue culture-grade petri-plates until

80% confluent, detached with trypsin-EDTA, and sub-cultured at a ratio of 1:4. For these experiments, early passage cells were

passaged an additional 3–4 times to generate roughly 10 million cells for RNA extraction. Cell lines were authenticated in house

through whole-exome sequencing (WES) of DNA and aligned with the reference genomes of the parent cell lines (NCBI GEO Acces-

sion). Mycoplasma contamination was routinely tested using the PCR-based Universal Mycoplasma Detection kit (ATCC,Manassas,

VA, USA).

Ex vivo stimulation of T-helper cell subsets

Th1, Th2, and Th17 cells were sorted from healthy donor PBMCusing a combination of chemokine receptors. Live CD45RA�CXCR5-

CX3CR1- CD3+ CD4+ memory T cells were sorted based on the expression of chemokine receptors CXCR3, CCR6, and CCR4.

Sorted populations of Th1 (CXCR3+ CCR6- CCR4-), Th2 (CCR4+ CCR6- CXCR3-), and Th17 (CCR6+ CCR4+/� CXCR3-) cells were

stimulated with ImmunoCult� (Stem Cell Technologies, Vancouver, BC, Canada) Human CD3/CD28 T Cell Activator reagent

(25 uL/mL), or left unstimulated in 0.2 mL of CellGenix media (Freiburg, Germany) for two hours in a 96-well deep well plate at

37�C with 5% CO2. After incubation, cells were centrifuged for three minutes, 450 x G. Supernatant was removed by gentle aspira-

tion. Cell pellets were resuspended in 0.2 mL Maxwell Homogenization Buffer (Promega, Madison, WI, USA) for storage at �80�C
until RNA extraction using the Maxwell simply cells RNA kit followed by Illumina Stranded mRNA library preparation and RNA-seq

as described in the RNA-seq section of the STAR Methods.

Blood samples
The peripheral blood of healthy donors was obtained from Research Blood Components (Watertown, MA, USA). For cell sorting from

blood and tissue, PBMCs were prepared from peripheral blood, labeled with monoclonal antibodies to identify populations of inter-

est, and sorted using a BD FACSAria III through a 100 mm nozzle. For flow cytometry, peripheral blood from 45 healthy donors was

collected in K2-EDTA vacutainers and processed within 24 hours of collection as described in the Flow Cytometry section of the

STAR Methods.

Tissue samples
NSCLC biopsies (n = 7) of early stage lung tumorswere collected by resection (Mark Poznansky, VIC,MassGeneral Hospital, Boston,

MA). Single-cell suspensions were prepared, and the same sample was subdivided for RNA-seq and CyTOF (n = 40 markers) anal-

ysis. Three RNA-seq/CyTOF normal tonsils samples were obtained from Dr. Leandro Cerchietti, WCMC. ccRCC samples for RNA-

seq/MxIF (n = 28) and RNA-seq/CyTOF (n = 8) were also collected (Dr. Hsieh, Washington University in St. Louis). All tumor samples

were collected under IRB-approved protocols at each institution.

METHOD DETAILS

Datasets
In addition to novel datasets, open source databases including ArrayExpress (Athar et al., 2019), GEO (Barrett et al., 2012), The

Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) were used (Vivian et al., 2017; Aran et al., 2015; Saltz

et al., 2018).

Sorted cell RNA-seq were collected from ArrayExpress and GEO databases (Table S8). All collected datasets included RNA-seq

(read length higher than 31 bp) without polyA depletion and without the use of targeted panels. Several quality checks were per-

formed. Samples with a total number of coding counts (of sequenced fragments) of less than 4 million were excluded. Samples

contaminated with microorganisms such as mycoplasma and bacteria were excluded. Datasets containing ‘‘monocytes’’
e6 Cancer Cell 40, 879–894.e1–e16, August 8, 2022

https://science.bostongene.com/kassandra/
https://github.com/BostonGene/Kassandra
https://github.com/BostonGene/Kassandra
https://science.bostongene.com/kassandra/
https://science.bostongene.com/kassandra/
https://github.com/BostonGene/Kassandra


ll
Article
differentiated into macrophages for 7 days were labeled as ‘‘macrophages’’ and were retained in the database. Other datasets

derived from pluripotent stem cells were excluded. Expression QC analysis was performed to exclude abnormal or unreliable data-

sets.Widely used cell-specific genes (e.g., CD4, CD3, andCD45) were analyzed, and datasets were excludedwhen the expression of

these genes did not agree with the dataset cell type label. Datasets of cell subtypes were re-labeled based on the lack of cell-specific

gene expression. For example, when a dataset labeled as Treg lacked the expression of FOXP3 and IL2RA but expressed CD4+

T cell-specific genes, the dataset was re-labeled as CD4+ T cells.

A total of 18,193 samples of sorted cells derived from microenvironment or blood and cancer cell samples, both line and sorted

were collected. Based on the quality checks described above, 9,041 samples were selected. Additionally, we used our dataset

comprising RNA-seq of sorted cells from both tissue and blood (n = 348). Also, 15 samples of plasma and non-plasma B cells

were obtained from Dr. Leandro Cerchietti, WCMC (denoted as BGD000001 dataset in Table S8). In total, the Kassandra database

contains 9,404 samples annotated into 18 TME cell types (apart from 6 used in training indirectly) and 38 populations present in blood

(Tables S1, S2, and S8).

RNA-seq processing and normalization
Bulk RNA-seq processing

Bulk RNA-seq fastq files were processed by Kallisto version 0.42.4 (Kallisto for Linux) (Bray et al., 2016). The Kallisto index file was

downloaded from the Xena project to be consistent with TCGA and GTEx expression data we used (Vivian et al., 2017). This index file

was built based on GENCODE transcriptome annotation version 23 (Frankish et al., 2019) and the human reference genomeGRCh38

with genes from the PAR locus removed (chrY:10,000-2,781,479 and chrY:56,887,902-57,217,415) (Vivian et al., 2017). In contrast to

paired-end fastq files, single-end fastq files were processed by Kallisto with additional options -l 200 -s 15 in line with Xena. The pro-

cessing resulted in TPM transcript expression. All cell type datasets obtained from GEO or ArrayExpress were recalculated in the

same way.

Fastq files were subjected to quality control measures via our pipeline employing FastQC (v0.11.5 or later), FastQ Screen (v0.11.1

or later) and MultiQC (v1.4 or later) tools. The reference genomes utilized for the creation of BWA aligner indices (for FastQ Screen)

included Homo sapiens (GRCh38), Mus musculus, Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces

cerevisiae, Arabidopsis thaliana,Mycoplasma arginini, Escherichia virus phiX174, microbiome (downloaded from NIH Human Micro-

biome Project website), adapters (provided with FastQC v0.11.5), and UniVec (NCBI).

scRNA-seq processing

Fastq files from scRNA-seq lung cancer datasets (E-MTAB-6149 and E-MTAB-6653 (Lambrechts et al., 2018)) obtained by the 10x

Genomics experimental protocol, were processed by the Kallisto scRNA-seq pipeline (‘‘bus’’ mode of Kallisto for raw reads pseu-

doalignment with -x flag accounting for the assay chemistry, additionally BUStools utils) (Melsted et al., 2019). Nine scRNA-seq

PBMC datasets were downloaded from the 10x Genomics website as raw count matrices (see ‘‘validation’’ section). Empty droplets

were filtered by means of barcodeRanks function of DropletUtils package (Griffiths et al., 2018; Lun et al., 2019). Raw count matrices

for the scRNA-seq dataset of B-cell lymphomas (BCL) (Roider et al., 2020) were acquired from heiDATA under accession code

VRJUNV. For further analysis, the Seurat package (Butler et al., 2018; Stuart et al., 2019) was used. UMI counts were normalized

using SCTransform for lung/PBMC datasets and by the total expression within a cell for BCL. Batch correction for the BCL datasets

was performed using Harmony package (Korsunsky et al., 2019) after genes from TCR and IG chains loci were excluded. Principal

component analysis (PCA) was performed for dimensional reduction (RunPCA function) and the first 20 and 90 components were

selected for further processing for lung/PBMC and BCL datasets, respectively. The Shared Nearest Neighbor graphwas constructed

(FindNeighbors function), and the Louvain community detection algorithmwas applied to identify cell clusters (FindClusters function).

t-SNE plots of lung/PBMC processed data (additionally, with Seurat batch correction) and a UMAP plot for BCL were used for visu-

alization. Appropriate labels were assigned to each cluster based on the expression of marker genes.

Tables with log2(TPM/10+1) values for four scRNA-seq datasets were acquired from GEO: melanoma (GSE72056) (Tirosh et al.,

2016), head and neck carcinoma (GSE103322) (Puram et al., 2017), glioblastoma (GSE131928) (Neftel et al., 2019) and ovarian cancer

(GSE146026, 10x Genomics) (Izar et al., 2020). t-SNE plots of log2(x+1) transformed TPM expression values of cell-type-specific

genes were utilized for visualization. Cell type annotations provided by the authors of the original studies were used for further anal-

ysis and elaboration. To define the T-cell, B-cell and fibroblast subpopulations that were not provided by the original studies, cells

derived from different samples of melanoma (Tirosh et al., 2016), HNSC (Puram et al., 2017; Tirosh et al., 2016), and lung (Lambrechts

et al., 2018) datasets were combined based on their annotation (for each dataset independently) and clustered by PhenoGraph

(Levine et al., 2015), obtaining additional clusters that were manually assigned to the specific cellular population. For the refinement

process of cell typing of the melanoma, HNSC, ovarian cancer and lung datasets, a set of genes for reclustering and nearest neigh-

bors numbers as a PhenoGraph parameter were selected (Table S8). The resulting cell typing with key cell markers is shown in

Figures S22, S24, and S25.

Normalization

Transcript groups presented in Table S8 were excluded from the TPM dataframe resulting from bulk RNA-seq processing (as ex-

plained in the main text). Non-coding RNA (e.g., micro-RNA and misc-RNA as previously described in the TCGA RNA pipeline

(George et al., 2017)) (Figure S30A) and short transcripts of TCR- and BCR-coding genes, annotated in the transcriptome as corre-

sponding to the V, D or J regions, were excluded from TPMnormalization. Histone-coding andmitochondrial genes were omitted due

to the uneven enrichment in different RNA extraction methods (e.g., PolyA vs Total RNA) (Newton et al., 2020). Unverified transcripts
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having low transcript support level, and transcripts with partially unknown coding sequences were also precluded from normaliza-

tion. Finally, 48 additional transcripts were removed according to other annotation tags reporting a lack of evidence or quality.

The sumof expression of all retained transcripts was normalized to 1,000,000, which resulted in adjusted TPM values. Finally, each

gene was assigned a TPM expression value by summing the TPM values of its transcripts according to the GENCODE transcriptome

annotation (Frankish et al., 2019) (Figure S30B). The full lists of retained transcripts and genes and an overview of different transcript

and gene categories before and after filtering are provided in Table S8. For bulk RNA-seq created from scRNA-seq data (for all of

which transcript expression or/and raw data are unavailable) and bulk RNA datasets without available raw data (SDY67 (Zimmer-

mann et al., 2016), GSE127813 (Newman et al., 2019)), gene expression was (re)normalized to TPM within the intersection of the

set of all genes from adjusted TPM dataframes described above and a geneset of a corresponding dataset.

Gene selection
Immune, stromal and endothelial cell type-specific genes were pre-selected by literature analysis, expression fold change analysis

with statistical testing and correlation analysis using collected RNA-seq samples of sorted cell types. Expression fold change anal-

ysis with statistical testing was performed in three stages according to the level of phenotypic hierarchy of cell types. After transcript

filtering and TPM renormalization, the first stage of analysis was performed on the following 8 sets of sorted cell samples: CD4+

T cells, CD8+ T cells andNK cells combined, B cells, Neutrophils, Macrophages andMonocytes combined, Endothelium, Fibroblasts,

and malignant cells (cancer cell lines). The Kruskal-Wallis test (nonparametric ANOVA analogue) was performed on all genes for

which at least one median within cell-type groups was greater than 1 TPM, and genes unsatisfied a p-value threshold of 0.05

(adjusted by Bonferroni correction) were removed. The Conover-Iman test (nonparametric pairwise test for multiple comparisons)

was performed on the remaining genes of the 8 sorted cell sample sets (with p-value threshold of 0.05 adjusted by Bonferroni correc-

tion for multiple comparisons within a current geneset). Finally, fold change (FC) analysis of median expressions of these sets was

conducted. Genes with log2(FC+1) less than 2 were excluded.

The second and the third stages of fold change and statistical analysis for feature selection were the same as the first one using

another sample grouping. The second stage was performed on the following groups: T cells, NK cells, B cells, neutrophils, macro-

phages, monocytes, endothelial cells, fibroblasts, and malignant cells (cancer cell lines). The third stage was performed on the

following groups: Tregs, T helpers, PD-1+ CD8+ T cells, PD-1- CD8+ T cells, NK cells, B cells (non-plasma), plasma B cells, neutro-

phils, macrophages, monocytes, endothelial cells, fibroblasts, andmalignant cells (cancer cell lines). Finally, gene sets obtained dur-

ing each stage were unified.

Independently, correlation analysis of artificial transcriptomes comprising non-malignant cell types was performed. Genes whose

expression inmixes correlated with RNA percentage of a given cell type better than Pearson correlation coefficient 0.6, were selected

as candidates to be used as specific genes of this cell type. Additionally, we conducted feature importance analysis (the SHAP

approach (Lundberg et al., 2020) from our tree-based machine learning models (i.e., allowing the algorithm to determine the most

significant genes for cell identification). Results of all computational analyses were combined and revisited based on literature anal-

ysis. The final sets of preselected genes are listed in Tables S3 and S4.

Generation of artificial transcriptomes
Using the collection of 9,414 samples (Tables S1–S3, S4, S5, S6 and S8), we created a variety of artificial transcriptomes. Here,

we assume that the gene expression profile of a tissue is the result of a linear combination of individual cell expression profiles

within that tissue (Zaitsev et al., 2019). The pipeline of creating artificial transcriptomes from purified RNA-seq samples of cell

types is shown in Figure 1J. The samples of different cell types are randomly selected from the common pool, averaged within

the cell type, and summed into a final expression file in proportions that resemble real tissues. The overall process is described in

detail below.

Rebalancing number of samples by datasets and cell subpopulations

We rebalanced the number of samples per datasets and cell types to create optimal mixes/artificial transcriptomes. The number

of sorted cell samples in a single dataset ranged from one to several hundreds. Datasets with too many samples can lead to

overtraining of the models to the specific experiment if samples are randomly selected from the common pool. To balance the

impact of different datasets, a number of samples within the dataset were resampled (Figure S31A). For each cell type, samples

were resampled according to the formula below. Where random Ndatasetnew samples from dataset are repeatedly taken

from Ndatasetold .

Ndatasetnew = Nmax

�
Ndatasetold

Nmax

�1� r

(Equation 2)

where Nmax is the number of samples in the largest dataset for one particular cell type, Ndatasetold is the original number of samples in

the dataset, and the rebalance parameter r is in the range [0, 1], in which 0 indicates no change in the number of samples, and 1

indicates that each dataset will contain the same number of samples. The rebalancing parameter r was set to 0.43 (Table S8).

Within a cell type (e.g., B cells), the number of sorted samples that belong to subpopulations (e.g., plasma/non-plasma B cells)

varies. Uneven selection of subpopulation samples could also lead to overtraining of the models if they are randomly selected

from the common pool. Therefore, the samples of each subpopulation Psubtype,msize=minP + 1 samples are resampled with
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replacement. Psubtype is a number reflecting the proportion of a given subtype,msize is themaximumbetween the number of samples

for each subpopulation, andminP is theminimumnumber Psubtype between all subpopulations. The resampling with replacement was

performed recursively for all nested subpopulations.

Averaging of samples

When generating artificial tissues, we averaged expression values from randomly selected samples of the same cell type prior to

the mix. This minimizes batch effects, reduces noise while increasing the read coverage, and allows for the development of a

greater diversity of artificial samples. However, averaging too many samples leads to a decrease in the biological variability within

a given cell type, which will affect the learning outcome. Therefore, the number of samples for averaging (Nav) was used as a

parameter, which, together with other parameters, was selected during hyperparameter optimization described below. In the final

implementation of the models, Nav = 9 for each cell type was used to create artificial tissues (Table S8).

Generation of tissue cell proportions

To create a large number of artificial transcriptomes, selected cell types were mixed in various ratios. The random proportion of cells

for each cell type and mix was generated using the following formula:

fcell =
RcellKcellP

cell

RcellKcell

(Equation 3)

where fcell is the generated mRNA fraction for a particular cell type, Rcell is the random number uniformly distributed from 0 to 1, and

Kcell is the coefficient from Table S8 for this cell type (coefficients for the most likely ratios of cell types in the tissue). For a specific set

of mixtures, only those cell types that were not nested within each other were used (Figures S31B and S31C). While the proportions of

cells in artificial transcriptomes were primarily generated to resemble the cellular composition of the real tumor tissue (Equation 4),

mixes with cells ranging from 0 to 100%were developed to train the model for outliers. These outlier transcriptomes were generated

by selecting random proportions from the Dirichlet distribution:

F = DirðHÞ Hcell =
1

Ncells

(Equation 4)

where F is the vector of cell mRNA fractions with the length equal to cell type number Ncell, and H is the vector with

concentration parameters with the same length. Each concentration parameter Hcell was equal to the inverse number of cell

types. The proportion of mixes generated using the Dirichlet distribution was controlled by the parameter Dp, which was

set to 0.335 (Table S8). Finally, the artificial transcriptomes generated based on random and Dirichlet distribution were

combined.

Cancer cell selection and hyperexpression noise

To each artificial TMEmix one tumor sample was added. This sample was randomly selected out of 2,166 sorted cancer cells and cell

lines (Tables S1 and S8). The proportion of cancer cells was generated from a normal distribution N(Tl, Tw2) with parameters of vari-

ance (tumor width, Tw) equal to 1 andmean (tumor level, Tl) equal to 0.5 (Table S8). If the generated value was greater than one or less

than zero, it was set at zero.

In tumor sample datasets, overexpression or amplification of genes is observed. To make robust models that consider the vari-

ability observed in real tumor biopsies, the aberrant expression of genes was imitated in our models. Hyperexpression noise was

added to each cancer cell expression in an artificial tumor tissue mix. For the small number of genes controlled by hyperexpression

fraction (Hf), noise values were added to the gene expression profiles (Figure S31D). With noise value selected as a random value

from a uniform distribution from zero to maximum hyperexpression level (Mhl). Hyperexpression fraction in the final model was

set to be equal to 0.03, and the maximum hyperexpression level was set to 3,428 TPM.

Generation of artificial tissue TME expression profiles

To create the artificial tissues, the expression vectors of each cell type were summed with coefficients reflecting the fractions of

mRNA of the cells (the sum of the fraction is equal to one).

Tmixbefore
i =

X
cell types

fcellT
cell
i

X
cell types

fcell = 1 (Equation 5)

where Tmixbefore
i and Tcell

i is expression of gene i in themix and cell in TPMunits. Finally, simulated noise is added to get the resultingmix

expression values Tmixafter
i :

Tmixafter
i = Tmixbefore

i + Noise
�
Tmixbefore
i

�
(Equation 6)

For creation of artificial replicas of TCGA data samples, we deconvolved TCGA data with our trained model. Then, using our cell

compendium data we performed the same procedure as for other artificial tissues with known RNA proportions of each cell type for

each sample. Artificial TCGA samples were similar to the real ones (Figure S4).

For the PBMCmodels, the artificial transcriptomes were constructed exactly as the solid tumormodels butmodels were trained on

artificial transcriptomes with tumors and the cell type ratios being drawn from the uniform distribution.
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Noise models
Expression of a single gene is presented as a sum of true expression mTi

plus sequencing error, which is a sum of Poisson technical

noise Pj
i, normally distributed noise derived from sequencing library preparation,Nprepi

, and themost variable biological noise, result-

ing from different functional states of the specimens, Nbioi
:

Tj
i = mTi + Pj

i + Nprepi +Nbioi (Equation 7)

Quantitative relative standard deviation (SD/mean) of noise di for gene i was calculated by the formula:

di =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2Pi

+ d2Ni

q
(Equation 8)

where dPi
is the relative standard deviation of Poisson technical noise and dNi

is the relative standard deviation of the normally distrib-

uted noise.

Assuming that technical replicates (j) of the same sample were sequenced with the same total coverage in readcounts (Rj = R). By

definition, the expression value in TPM units is calculated by the formula:

Tj
i =

Cj
i

likj
$106; kj =

X
m

Cj
m

lm
(Equation 9)

whereCj
i is the expression in counts of gene i in the sequencing replicate j, and li is the effective length of gene i. Because the number

of total read counts (R) are the same, then kj1 z kj2 = hkjij = K for every j1, j2 (where the operation hii is averaging across index i).

Using (8):

Ti =

*
Cj

i

likj

+
j

$106 =
Ci

Kli
,1060Ci =

TiliK

106
(Equation 10)

where Ci is the the average expression value in counts of gene i, similar to Ti. From the Poisson distribution:

mci = s2
ci

=
�
Cj

i � mci

�2

=

�
Kli
106

�2�
Tj
i � mTi

�2
=

�
Kli
106

�2

s2
Ti

(Equation 11)

Let

b2 =
106

K
(Equation 12)

then from Equations (10) and (12) follows:

Ti = s2
Ti

Kli
106

= s2
Ti

li

b2
0b =

ffiffiffiffiffi
li

T i

s
sTi (Equation 13)

Thus, for gene i in TPM units, the standard deviation (SD) and noise (SD/mean) are expressed using the following formulas:

sTi = b

ffiffiffiffiffi
Ti

li

s
(Equation 14)
dPi
= b

ffiffiffiffiffiffiffi
1

liT i

s
(Equation 15)

K is proportional to the total number of sample coverage in readcounts (R) assuming:

K =
106

a2
R (Equation 16)

Following from Equations (9), (12), and (15):

bhbðRÞ = affiffiffiffi
R

p 0dPi
= a

ffiffiffiffiffiffiffiffiffiffi
1

liT iR

s
(Equation 17)

For noise modeling (Figures 2E–2I), data analysis only included samples with 5$106 < R < 17:5$106 read counts and genes with

mean expression value >5 TPM. The obtained model was used to simulate technical noise in artificial transcriptomes to mimic

sequencing at R = 30$106 read counts. Noise was added as two separate summands (technical and biological) according to the

formula:
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Tmixafter
i = Tmixbefore

i + b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmixbefore

i

li

s
xP + gTmixbefore

i xN (Equation 18)

where xP; xN � Nð0; 1Þ and g is the coefficient of uniform level of non-poisson noise, which we assumed has a standard normal

distribution. Expression values lower than 0 TPM were rounded to 0 TPM.

To estimate coefficient a from (Equation 17) we collected 648 sets of technical replicates of samples with nearly the same read-

count (±10% from the average value). For each set, b was approximated for each gene using Equations (14) and averaged. Coeffi-

cient a = 2.05was estimated according to (Equation 17). Also, from (Equation 17) coefficient bð30 $106Þ = 0:37: The g coefficient was

estimated to be equal to 0.168618 (Table S8). After technical correction, the measured variation of replicates lost dependence on the

coverage. Subsequently, this noise was used to add technical variation to the artificial mixtures, resulting in better mimicking of real

tissues, ensuring stability when encountering real-world sequencing variability.

Model training
Each model was trained to predict the percent RNA fraction of each cell type represented in the mix using LightGBM version 2.3.1

(https://github.com/microsoft/LightGBM). LightGBMmodels for each cell type were trained in two stages, with each stage creating a

separate model. For each cell type model, mixes were generated from samples of the cell types according to their hierarchy

(Figures 1G and 1H) and the model training illustrated in Figures S31B and S31C. The input training data for the first stage was a

set of 150,000 artificial mixes for each cell type, using gene expression as training features. In this first stage, median expression

values were calculated as an additional feature. In the second stage, predictions for each cell type calculated using first stagemodels

were used as additional features (Figure S32A). For each cell type and at each stage, 10 independent models were trained using

different random subsets of datasets (Figure S32B). Predictions from final 10 trained second stage models were averaged to obtain

the final RNA percentage of a cell type (Figure S32B). As a result, a total of 18 million artificial RNA-seq mixes were generated for the

training of 420 LightGBMmodels. Ultimately, the Kassandra algorithm was implemented using Python 3 using the following libraries:

pandas, scikit-learn, SciPy, NumPy,matplotlib, seaborn, LightGBM. In addition, we implemented ameasure of prediction uncertainty

(SD of predictions) for each cell type by revoking the code on an ensemble of 10 independent models and calculating the SD across

the 10 models as visualized for scRNA-seq and CyTOF experiments (Figure S33). Kassandra-Blood models were trained separately

by the same procedure described above, with the exception that only one model per cell type was trained, resulting in a total of 8

million artificial RNA-seq mixes generated for the training of 40 LightGBM models.

Parameter optimization

The parameters utilized for mixture generation (Nav, g, Dp, r, Hf, Mhl) could not be selected on artificial mixtures. Therefore, these

parameters were selected using an indirect method on real tissues. Schema of parameter optimization is shown in Figure S34A.

We trained LightGBM models for each cell type separately. Parameters Nav, g, Dp, r, Hf, Mhl (Table S8) have been varied, and

the predicted fractions for a major cell type were compared with predictions of the sum of the it’s subpopulation (Figure S34B).

Each parameter was selected randomly with a uniform distribution from the range specified in Table S8. For each set of parameters,

6 groups of 50,000 mixes were generated for model training. First-stage (LightGBM) trained models were applied to TCGA and GTEx

samples to obtain predictions of cell type mRNA percentages. Then, the following groups of models (concordance groups) were

compared with the MAE metric: Immune cells vs Lymphocytes + Myeloid cells, Myeloid cells vs Macrophages + Monocytes + Neu-

trophils, Lymphocytes vs NK cells + T cells + B cells, T cells vs CD4+ T cells + CD8+ T cells, CD4+ T cells vs Tregs + T helpers, CD8+

T cells vs PD-1+ CD8+ T cells + PD-1- CD8+ T cells, B cells vs Plasma B cells + Non plasma B cells. A total of 2,097 sets of parameters

spanning approximately 629million artificial mixeswere tested. A set of parameters with the bestMAE (Figure S34C) was selected for

each concordance group (Figures S35A and S35B), and the selected parameter sets were averaged, with the final parameter values

shown in Table S8.

LightGBM hyperparameter optimization

All training datasets were randomly divided into training and validation samples; subsequently, mixes were generated from these

datasets (Figure S36A). Specific parameters were optimized for model training (Table S8). The evaluation metric was the mean ab-

solute error (MAE), and the evaluation score of the vector was the averaged score between folds (Figure S36B). Overall, 40,000 sets of

parameter vectors were generated, with each vector consisting of the 9 most important parameters for LightGBM (Figure S36C) with

a unique parameter range (Table S8). Every cell typemodel was trained on these data according to its unique list of genes. Models for

each parameter vector were trained separately on 3 folds and evaluated on the validation set ofmixes. Overall, 100 parameter vectors

for each cell type was chosen as a starting population for the genetic algorithm (Figure S8C). In brief, the algorithm performed cross-

over (random exchange of parameters between two vectors) andmutations (randommodification of one random parameter in a vec-

tor). If the parameter is max_depth, it can mutate its value only by Dp = ±1; 0. Mutation value Dp for other parameters was calcu-

lated according to the formula:

Dp = ± qðpmin + xpmaxÞ (Equation 19)

where q = 0.5 is the power level of mutation, pmin and pmax are the boundary values of the parameter, x � Nð0; 1Þ, the sign is chosen

randomly. The generated vectors were then evaluated to form a new generation of 100 vestors for each cell type for the next iteration

across all vectors used in the genetic algorithm, which was repeated if the algorithm was not manually stopped (Figure S8B). Using
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these generated vectors, we predicted the percent of each cell type in themix. This procedure was repeated using newmixtures with

the same cell ratio concatenated with predicted features, and the vectors were sorted by their evaluation score. Ultimately, the best

parameter vector was selected for each model cell type for two steps (Table S8).

Deconvolution specificity
The specificity analysis was performed on holdout samples that were not used in the development of Kassandra (Table S8). The

expression of 10 random samples for each cell type were averaged, and each deconvolution algorithmwas applied to the expression

values (Figures 3K and S11). For all the algorithms, the values represent the percentages of cells, with the exception of MCP-counter

and xCell, where values for each cell typewere normalized to themaximum andmultiplied by 99. To calculate a non-specificity score,

50 random mixes were created from samples of other cells, including cancer cells. Mixes were created using the method described

above to prepare artificial tumor samples, except that only fractions for cell types from the Dirichlet distribution for all cell types were

used, and each deconvolution algorithmwas applied to themixes (Figure 3L). The scoreswere calculated using the following formula:

Scorecell =
Fcellnonspecific

Fcellspecific

$100 (Equation 20)

where Fcellspecific is the value predicted for the cell type by the algorithm on 10 averaged random samples of this cell type described

above (true positive signal). And Fcellnonspecific is the average value for this cell type on mixes where cells of this type were absent (false

positive signal).

Limit of detection
Limit of Detection (LOD) was assessed on holdout samples (Table S8). To investigate the dependence of the algorithm on the number

of readcounts, mixes should be generated with a determined number of readcounts. To create these mixes, fastq files were frag-

mented, and each file contained approximately 50,000 target readcounts (single-end reads or pairs of paired-end reads) after tran-

script filtering. A total of 74,340 fastq file fragments were prepared, expression for each was calculated using Kallisto and normalized

into TPM as described above.

For each total coverage from 0.15 to 125 mln reads, sets of 150,000 artificial tumors were created from small fragments of fastq

files of sorted cells RNA-seq. A total of 7.8 million mixes were created. In each artificial tumor the fractions of all cell types, including

cancer cells, were selected from a Dirichlet distribution with concentration parameters inversely proportional to the number of types.

The dependence of the Pearson correlation on the number of readcounts is shown in Figure 3I, and the dependence of the prediction

variation on the fraction of cell RNA in the mix is shown in Figure 3J.

Quantitative cell estimation
Various cells contain different amounts of total RNA due to their different sizes and functions (Racle et al., 2017; Monaco et al., 2019).

The predicted mRNA fractions (Rcell) of the main cell types were normalized to 1.0, taking into account their subtypes. If their

sum was less than one, their values were unchanged, and the remainder up to one was denoted as the ‘‘Other’’ cell type:

ROther = 1 � P
cellRcell. If the sum was greater than one, then the fractions were normalized to one, and "Other" was written to

zero. To calculate cell percentages from RNA fractions, we used the following formula:

Ccell =

Rcell

AcellP
cell

Rcell

Acell

(Equation 21)

where Ccell is the cell fraction of the cell type, Rcell is the RNA fraction of the cell type, Acell is the relative RNA per cell coefficient andP
cellRcell = 1. For recalculations, no cell subpopulations of the included cell types were used. For neutrophils, monocytes, B cells,

T cells and NK cells, coefficients were taken from previous studies (Racle et al., 2017; Monaco et al., 2019). We utilized intermediate

values for those cells and integrated the values into our recalculation. For other cell types, including myeloid cell and stromal cells,

7 million sets of random coefficient values were generated for each corresponding population. For each set of values, we applied the

values to RNA deconvolution of tumor tissues from the TCGA RNA-seq data. The "Other" cell type also has its own RNA per cell co-

efficient. In bulk tumor tissue, the ‘‘Other’’ cell type calculated by the model included malignant cells and benign epithelial cells not

deconvolved by Kassandra. Cell types or subtypes that included or were a subset of the utilized types were recalculated according to

the change in used types. We calculated the percentage of ‘‘Other’’ cell fraction (meaning cancer cells) and estimated its correlation

with tumor purity of TCGA samples calculated by whole exome sequencing (WES) by the ABSOLUTE algorithm (Aran et al., 2015)

(Figure 4D). For each cancer type, we selected a coefficient set with the best correlation value. Final coefficients were obtained

by averaging values for each cell type across cancers (Table S5).

To validate the coefficients, equal cellular proportions (50:50) of T cells and a specific cell type weremixed and sequenced, and the

algorithm was employed to calculate the relative RNA per cell coefficients. T cells or naive CD4+ T cells were used as a reference

having a coefficient equal to 1, allowing the calculation of the coefficients for a specific cell type as a ratio of its RNA percentage

to the RNA percentage of admixed naive CD4+ T cells. The coefficients for neutrophils, monocytes, and T cells were concordant

with other algorithms; coefficients for macrophages were in good concordance with the predictions from TCGA (Figure S10A).
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This method was also utilized for blood-derived naı̈ve B cells, memory B cells, plasma B cells, cytotoxic NK cells, classical and non-

classical monocytes, NK cells, naı̈ve CD8+ T cells, andmemoryCD8+ T cells (Figure 3G). For blood subpopulationswhere coefficients

were not measured, we calculated the coefficients by fitting RNA percentages to 45 independent FACS experiments analogously as

described in ABIS (Monaco et al., 2019) (Figure S10D). For coefficients fitting linear regression with fixed intercept were used (scikit-

learn package python). Each cell type coefficient was iteratively fitted with other cell type coefficients fixed during the whole iteration.

In the next iteration, coefficients from the previous iteration were used to recalculate new cell proportions and update coefficients,

and the iterations were continued until all the coefficients converged. This resulted in fitted andmeasured coefficients for all cell types

concordant in the order of magnitude with other algorithms and experimentally measured values (Figure S10D).

Other deconvolution algorithms
The Kassandra algorithm was compared with 9 different published deconvolution algorithms: EPIC (Racle et al., 2017), CIBERSORT

(Newman et al., 2015), CIBERSORTx (Newman et al., 2019) with available matrices LM22 and HNSC, FARDEEP in relative and ab-

solute modes (Hao et al., 2019), quanTIseq in default and tumor modes (Finotello et al., 2019), ABIS (Monaco et al., 2019), and MCP-

counter (Becht et al., 2016), xCell (Aran et al., 2017) and Scaden (Menden et al., 2020). FARDEEP version 1.0.1 returned an error in

several analyses; therefore, no results could be used for comparison for certain analyses. Comparison with the MAE metric for the

xCell and MCP-counter algorithms were not included because they produce scores as the result, not percentages of cells.

For the CIBERSORTx algorithm, the default LM22 and HNSC matrices were used. Processed gene expression values were up-

loaded as gene expression mixtures and calculated in absolute mode (without batch correction, without permutations, and with

quantile normalization disabled as recommended for RNA-seq data) on the official website (https://cibersortx.stanford.edu/index.

php). The ABIS deconvolution algorithm was launched as a shiny application (https://github.com/giannimonaco/ABIS) in RStudio

(v1.1.463, R version 3.5.1). Expression values processed as described above (see ‘‘RNA-seq processing and normalization’’)

were uploaded to the application andwere analyzed in RNA-seqmode (not microarray mode). MCP-counter was designed to predict

the abundance of certain subtypes of cells in artificial in vitromixes and was trained on microarray data, not on RNA-seq, and MCP-

counter does not predict the absolute values of cells, only units. xCell uses gene enrichment scores to predict the amount of certain

cell types in a sample.

Scaden algorithm

We calculated cell percentages for validation datasets using the Scaden (PBMC) model via the web interface (https://scaden.ims.

bio). Second, Scaden was trained on our scRNA-seq lung cancer dataset (E-MTAB-6149 and E-MTAB-6653), and via the Scaden

API, a total of 500,000 mixes were simulated. Third, Scaden was trained on the same artificial mixes as Kassandra to compare

LightGBM models with NN models. Expression values for the training were processed as described in their documentation. In all

cases, NN was trained in 5,000 steps as suggested by the authors (https://scaden.readthedocs.io/en/latest/usage/).

Validation
Histologically defined percentages of tumor-infiltrating lymphocytes (TILs) and macrophages for TCGA H&E slides (Saltz et al., 2018)

were used for the initial validation of Kassandra predictions. Relative percentages recovered by neural nets from H&E images were

directly correlated with Kassandra predictions from RNA-seq of the same tumor samples. To calculate the ‘‘TIL percentage’’, T cells,

B cells and NK cells were summed.

Three scRNA-seq datasets of Smart-Seq2 experimental design were also used for validation: melanoma (GSE72056) (Tirosh et al.,

2016), head and neck carcinoma (GSE103322) (Puram et al., 2017) and glioblastoma (GSE131928, Smart-Seq2) (Neftel et al., 2019)

datasets. Additionally, 13 10X Genomics experimental design datasets were also used: 8 PBMC (from healthy donors) demo data-

sets (10XGenomics company; https://support.10xgenomics.com/single-cell-gene-expression/datasets/10k PBMCs (v3 chemistry),

1k PBMCs (v2 chemistry), 1k PBMCs (v3 chemistry), 3k PBMCs (v1 chemistry), k PBMCs (v1 chemistry), k PBMCs (v2 chemistry),

k PBMCs (v2 chemistry), 5k PBMCs (v3 chemistry), and a dataset with 68k PBMC cells from methodological 30 scRNA-Seq study

(Zheng et al., 2017), two lung cancer datasets (12 adenomatous or squamous tumor samples with 10X Genomics Chemistry v2

from E-MTAB-6149 and E-MTAB-6653) (Lambrechts et al., 2018), an ovarian cancer (GSE146026, 10X Genomics part) (Izar et al.,

2020) dataset and a B-cell lymphoma dataset (Roider et al., 2020) (additionally containing 3 reactive non-malignant lymph node sam-

ples). Single-cell data were processed as described above, transformed to pseudobulk RNA-seq samples and deconvolved with

Kassandra. Smart-Seq2 artificial bulks were constructed as a mean expression vector of all TPM expression vectors of cells

belonging to each patient sample, which is equivalent to the sum of all cell vectors and subsequent TPM normalization. Cell percent-

ages in each artificial bulk were calculated and set as true values for comparison with deconvolution algorithm predictions of RNA

percentages (because TPM normalization within each single cell eliminates difference in amounts of RNA per cell). 10X Genomics

artificial bulks were constructed as the sum of all expression vectors (umi counts) of cells belonging to each patient sample and

then normalized to the sum of umi counts and multiplied by 1 million; therefore, the resulting artificial bulk expression vector was

approximate to TPM. True cell type RNA proportions for each artificial bulk was calculated as the umi count sum of each cell type

within this pseudobulk divided by the total number of umi counts of this artificial bulk.

In addition to scRNA-seq, Kassandra was also validated on flow cytometry data. We performed both flow cytometry and RNA-seq

analysis on 45 paired PBMC samples. Kassandra’s prediction was compared with cell quantities obtained by flow cytometry

(Monaco et al., 2019; Finotello et al., 2019; Newman et al., 2019; Linsley et al., 2014; Hoek et al., 2015; Zimmermann et al., 2016)

in 6 public datasets (total number of samples = 517) and from 2 datasets processed by automated hematology analyzer (total number
Cancer Cell 40, 879–894.e1–e16, August 8, 2022 e13

https://cibersortx.stanford.edu/index.php
https://cibersortx.stanford.edu/index.php
https://github.com/giannimonaco/ABIS
https://scaden.ims.bio
https://scaden.ims.bio
https://scaden.readthedocs.io/en/latest/usage/
https://support.10xgenomics.com/single-cell-gene-expression/datasets/


ll
Article
of samples = 350) (Altman et al., 2019; Shin et al., 2014). Moreover, 7 lung adenocarcinoma samples for subsequent RNA-seq and

CyTOF analyses were obtained (Dr. Mark Poznansky, VIC, Mass General Hospital). In brief, biopsies of early stage lung tumors were

collected by resection. Single-cell suspensionswere prepared, and the same sample was subdivided for RNA-seq andCyTOF (n = 40

markers) analysis. Three RNA-seq/CyTOF normal tonsils samples were obtained from Dr. Leandro Cerchietti, WCMC. Cellular per-

centages obtained fromCyTOFwere directly comparedwith cellular percentages predicted by Kassandra fromRNA-seq data. Multi-

plex immunofluorescence (MxIF) was also employed for Kassandra validation where 28 RNA-seq/MxIF and 8 RNA-seq/CyTOF clear

cell renal cell cancer (ccRCC) samples were collected (Dr. Hsieh, Washington University in St. Louis). Tumor samples were divided

and sent for RNA-seq, MxIF, and CyTOF analysis. Cellular percentages obtained fromMxIF and CyTOF were directly compared with

cellular percentages predicted by Kassandra from RNA-seq. These tumor samples were collected under IRB-approved protocols at

the listed institutions.

Prediction of IHC PD-L1 expression by Kassandra-based TME reconstruction
The bladder cancer (n = 348, EGA: EGAS00001002556 (Mariathasan et al., 2018)) and gastric cancer (n = 34, ERP107734 (Kim et al.,

2018)) datasets were obtained from the EGA or SRA databases. The ccRCC expression dataset with corresponding IHC values (PD-L1

IC: ranging from 0 - 40%) was provided by Dr. Hsieh (Washington University in St. Louis). Samples PB-16-054, PB-16-043, PB-16-066

belonging to the Kim et al. dataset were excluded due to poor coverage or because the samples were outliers on the PCA. Samples

PB-16-006, PB-16-007, PB-16-008, PB-16-010, PB-16-011, PB-16-013, PB-16-014, PB-16-015, PB-16-016, PB-16-026, PB-16-047,

PB-16-048, PB-16-049, PB-16-051, PB-16-052, PB-16-055, PB-16-056, PB-16-057 from the Kim et al. dataset were excluded due to

HLA mismatch with WES from the same patients (Kim et al., 2018). All the PD-L1 positivity scores were unified to IC0 (<1% positive

immune cells); IC1 (1–5% positive immune cells); and IC2+ (>5% positive immune cells). The bladder cancer dataset was randomly

divided into training (n = 235) and test (n = 115) cohorts. We applied an ordinal regression model on the cell percentages reconstructed

by Kassandra from RNA-seq on the training set to predict PD-L1 IHC status (IC0, IC1, IC2+). Next, we created a logistic regression

model (for classification of the IC0 and IC2+ IHC expression levels) on the bladder cancer training cohort. We assessed the model per-

formance on the bladder test, gastric and ccRCC cohorts using AUC values (Figure 6O).

PD-1+ CD8+ T cell percentage association with response to immunotherapy

The bladder cancer (n = 348, EGA: EGAS00001002556 (Mariathasan et al., 2018)), gastric cancer (n = 34, ERP107734 (Kim et al.,

2018)), ccRCC immotion150 (EGAC00001000946 (Pal et al., 2020)) datasets were obtained from the EGA or SRA databases. Immo-

tion150 was divided into the atezolizumab (ccRCC PD-L1) and atezolizumab+bevacizumab (ccRCC PD-L1/VEGF) and sunitinib (not

shown) cohorts and analyzed separately.We also curated only pre-treatment samples collected less than 200 days before the start of

therapy. For anti-CTLA-4-treated patients from the Van Allen et al., 2015 (n = 40) andNathanson et al., 2017 (n = 20) cohorts, only non-

acral or mucosal samples were analyzed. Gide (ERP105482) (Gide et al., 2019), Liu (Liu et al., 2019b) (phs001036), Hugo (Hugo et al.,

2016) (GSE78220, GSE96619) cohort samples were combined. Obtaining a total of 6 cohorts of patients for analysis. For survival

analysis, Cox hazard regression modeling was conducted with cell percentages, PD-L1 expression and Tumor Mutational Burden

(TMB) as parameters.

ML-based immunotherapy response prediction
The bladder (anti-PD-L1), gastric cancer (anti-PD-1), ccRCC (anti-PD-L1, -PD-L1+BEVA) cohorts were used to evaluate the predic-

tive power of TME percentages predicted by Kassandra as a therapy response classifier. Both cross-validation and a separate mel-

anoma cohort (anti-PD-1) were used to evaluate classifier performance (Figure S28J). Separate LightGBM classifiers were trained

with the following features: 1) Z-score of PD-L1 expression (TPM) within one cohort, 2) TMB, 3) cell percentages predicted by

Kassandra: M1 macrophages, endothelial cells, NK cells, and 4) all of the above features in different combinations.

Database of blood RNA-seq samples
Whole blood RNA-seq were collected from ArrayExpress and GEO databases. All collected datasets included RNA-seq (read length

higher than 31 bp) without polyA depletion and without the use of targeted panels. Several quality checks were performed. Samples

with a total number of coding counts (of sequenced fragments) of less than 1 million were excluded. Samples contaminated with

microorganisms such as mycoplasma and bacteria were excluded. Samples without explicit age annotations were excluded from

the analysis. This resulted in 1,750 samples of whole blood RNA-seq (Table S8).

Samples were split into 5 groups by the donor’s reported age- [’<30, ’3–250, ’30–500, ’51–750, ’>75’]. Cell fractions were predicted

by the Kassandra Blood deconvolution model. Granulocytes and their subtypes were excluded from predictions and fractions were

renormalized to add up to 1. Differences in predicted fractions of monocytes and differences in predicted fractions of Transitional

Memory T-helpers relative to total predicted T cells between age groups were tested for statistical significance by the two-tailed

Mann-Whitney test.

CyTOF data processing
The following markers were used in the CyTOF panel for the analysis of the non-small cell lung carcinoma (NSCLC) cell suspension:

CD11b, CD11c, CD127, CD137, CD14, CD152, CD154, CD16, CD184, CD19, CD197, CD20, CD206, CD223, CD25, CD3, CD31,

CD33, CD38, CD39, CD4, CD44, CD45, CD45RA, CD45RO, CD56, CD66b, CD68, CD69, CD8, CD90, CD95, EPCAM, FoxP3,

HLA-DR, PD-1, PD-L1, T-bet, Tim3. For the analysis of the renal cell carcinoma (RCC) tissue, the following markers were used in
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the CyTOF panel: CD45, CD3, HLA-A_B_C, CD57, CD69, CD4, CD8, CD11c, CD16, CD25 (IL-2R), CD10 7(LAMP1), CD66b, CD45RA,

CD163, CD86, CD27, CD197 (CCR7), CD14, FoxP3, CD127 (IL-7Ra), CD141 (Thrombomodulin), CD38, CD19, HLA-DR, CD68,

GranzymeB, PD-1, PD-L1, CD56 (NCAM), CD11b (Mac-1). The samples were gated for separation of beads, reference PBMCs,

and isolation of living cells (Cisplatin/DNA1) (Figure S37A). The CyTOF signal values were subjected to standard hyperbolic arcsine

(archsin(x/5)) transformation before clustering (Figure S37B). To obtain the primary cell populations, we clustered and assigned a cell

type to the cells of each sample independently. Clusterization was performed using FlowSOM 1.20.0 (Van Gassen et al., 2015). For

clustering stability, we repeated clustering of each sample 30 times using 90% of randomly selected cells. Clusterization was per-

formed using FlowSOM, with default parameters except for the grid size (xdim = 10, ydim = 10).

As a reference, a NSCLC (VIC26) and a ccRCC (WUR120_A1) sample was used. Clusters for VIC26 and WUR120_A1 were manu-

ally chosen as the main populations in accordance with the following rules: CD8+ T cells (SD45+ CD3+ CD8+ CD4� CD56�), CD4+

T cells (SD45+ CD3+ CD4+ CD8� CD56�), NK cells (CD45+ CD56+ CD16+), neutrophils (CD45+ CD66+ CD16+), macrophages/mono-

cytes (CD45+ HLA-DR+ CD11c+), fibroblasts (CD45� CD90+ EPCAM�), endothelial cells (CD45� CD31+ EPCAM� for NSCLC and

CD45� CAIX� CD107+ for RCC), B cells (CD45+ CD19+ CD20+), SD20- B cells/Plasma cells (CD45+ CD19+ CD20�), Tumor

(EPCAM+ for NSCLC/CAIX+ for RCC).

For the remaining samples, the resulting clusters for each repeat were typed by comparing the average values with pre-marked

reference populations. For every cluster, the mean vector of signals was calculated. The resulting vector was correlated using Pear-

son correlation with known vectors for pre-marked populations. For every cluster (and all cells in it), the population was typed with a

pre-marked population with maximum correlation. If the most correlated population had a correlation coefficient <0.6, the cell type

for each individual cell was defined as a consensus of repeated clustering, as the most frequent type for that cell in repeats. To deter-

mine the subpopulation of CD8+ T cells, CD4+ T cells, B cells, andmacrophages, cells of these types were separated from others and

subsequent analysis was performed independently for each cell type. Also, for noise reduction, only selected markers were em-

ployed to determine subpopulations. The following markers were used to determine subpopulations of T cells, B cells and macro-

phages: For CD4+ T cells and CD8+ T cells (CD69, CD25, CD223, CD95, CD45RA, Tim3, FoxP3, CD39, T-bet, CD45RO, CD127,

PD-1, CD38, CD4, CD8); for NSCLC and RCC (CD45RA, CD197, CD127, CD25, FoxP3, CD57, Granzyme B, CD27, CD69, PD-1,

CD38); for B cells (CD95, CD39, CD69, CD184, CD38, CD20, HLA-DR), B cell subpopulations were determined only for NSCLC sam-

ples; for macrophages and monocytes (CD206, CD68, CD11c, CD14, PD-L1, CD16, HLA-DR, CD44, CD11b, CD127, CD38, CD33);

for NSCLC and RCC (CD14, CD11c, CD11b, HLA-DR, CD16, CD163, CD68, CD4, CD38, PD-L1, CD86, CD107a, CD69).

Multiplex imaging
Staining

Five mmFFPE ccRCC tissuemounted onto Superfrost�Ultra Plus adhesion slides were baked at 60⁰C for 1 hour, deparaffinized with

2 washes of fresh-xylene and rehydrated with ethanol washes 100% (2x), 95% (2x), 70% (2x), 50% (2x), 1X PBS (1x), and 0.3% Triton

X100 in 1X PBS (1x) and was subjected to a two-step antigen retrieval process. Next, the tissue sections underwent repeated cycles

of staining, imaging and signal removal. The sections were stained with antibodies directly conjugated with either Cy3 or Cy5 dye at a

previously optimized concentration. All antibody mixes used for seven incubation rounds were incubated at room temperature for

1 hour in a humid chamber. After incubation for all rounds, slides were washed in 1X PBS for 5 min (3x). The tissue sections were

then stained with DAPI solution (1 ug/mL) for 15 min. The slides were washed with 1X PBS and the coverslip was added immediately

using mounting media. Antibodies against BAP1, CAIX, CCASP3, CD11B, CD11C, CD16, CD206, CD20, CD31, CD3, CD45, CD4,

CD56, CD68, CD8, DAPI, GRB, H3K36TM, HLA, KI67, NAKATPASE, PBRM1, PCK26, PD-L1, PTEN, S6 were used.

Imaging and image processing

Immunofluorescence confocal imaging of human ccRCC tissue slideswas performed using aGE INCell Analyzer 2200 equippedwith

x20 objective. Imageswere capturedwith aCMOS camera under the following exposure settings. In total, we captured 145 regions of

interest (ROI) from 28 different patient samples. MxIF imaging was performed with the following high-efficiency fluorochrome-

specific filter sets specific for DAPI, CY3, CY5. Image processing and deconvolution were performed with NIS Elements. After

this pre-processing, a large data set of images were obtained at the same resolution and 16-bitness. The images were cropped

into small regions of the same size, while maintainingmarker names and numbering of regions for the purpose of original image resto-

ration at the final steps.

Cell segmentation and typing

Cell segmentation was performed using UNet semantic segmentation neural network and watershed post-processing of the identi-

fied cell masks to reduce under segmented cell counts. For the cell segmentation neural network, 2 markers were utilized in the

training set as follows: (i) a region was designated as a cell only in the presence of one nucleus; (ii) a closed NAKATPASE border

around the nucleus was designated as a membrane; (iii) if no NAKATPASE border was found, we defined the cell membrane as

an area at a distance up to 15 pixels from the nucleus, depending on the proximity of neighbors. Mean fluorescent intensity of fluo-

rescent markers for each cell segment was calculated, allowing analysis of MxIF data as a single cell proteomics dataset with total

number of cells = 1,084,511. Cells were clustered using Phenograph, and each cluster was manually assigned with a specific cell

type. Cluster of cells expressing CD3, CD4, CD45was annotated asCD4+ T cells, cluster expressing CD3, CD8, CD45was annotated

as CD8+ T cells, cluster expressing CD206, CD68, CD11c was annotated as macrophages. To estimate the proportion of blood ves-

sels, we used CD31marker expression.We created a binarymask andmeasured the percentage of endothelium area that covers the

tissue for each ROI. All of the processing steps utilized the OpenCV library in Python language.
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Flow cytometry
Peripheral bloodwas collected from 45 healthy donors (Research BloodComponents,Watertown,MA, USA) in K2-EDTA vacutainers

and processed within 24 hours of collection. For the generation of PBMC fractions, red blood cells and granulocytes were removed

using density gradient centrifugation and SepMate tubes (StemCell Technologies, Vancouver, Canada) by layering blood over Ficoll-

Paque Plus (Cytiva, Marlborough, MA, USA). For analysis of complete peripheral blood leukocytes, RBC from undiluted whole blood

was lysed using RBC lysis buffer (ThermoFisher, Waltham, MA, USA). Both sample preparations were subsequently processed simi-

larly; after several washes in flow cytometry staining buffer (PBS + 2% newborn calf serum (v/v) + 1 mM EDTA), cells were counted,

resuspended in staining buffer containing TrueStain FcX, Monocyte blocker (Biolegend, San Diego, CA, USA) and 10% (v/v) Brilliant

stain buffer (BD Biosciences, San Jose, CA, USA) to block non-specific labeling andGhost Dye Aqua (Tonbo Biosciences San Diego,

CA, USA) to assess viability. Two million cells were then collected and lysed for RNA extraction using the RNAeasy mini kit (Qiagen,

Hilden, Germany). The remaining cells were then labeled with different antibodies to resolve subpopulations of CD4+ T cells, CD8+

T cells, B cells, monocytes, NK cells, granulocytes, and dendritic cells (Table S6). The cells were then fixed in BD CytoFix/CytoPerm

for stabilization prior to acquisition. Up to one million events per panel were acquired on a BD FACSCelesta flow cytometer and pop-

ulations of interest were identified using manual bivariate gating on FlowJo Software V10 (BD Biosciences).

Cell lines and creation of mixtures with PBMCs
The COLO829, MCF7 and K562 cancer cell lines were purchased from American Type Culture Collection (ATCC, Manassas, VA,

USA) andmaintained according to the vendor’s instructions. PBMCswere obtained from fresh peripheral blood of one healthy donor

(Research Blood Components, Watertown, MA, USA), and isolated using Ficoll-Paque as described above. Cell lines and PBMCs

were counted using a Cellometer Auto 2000 (Nexcelcom, Lawrence, MA, USA) using acridine orange and propidium iodide to

enumerate viable cells. Live cancer cells were then mixed with live PBMCs in ratios of 12:88, 25:75, 50:50 and 100:0, respectively,

in duplicate (5 3 105 total cells, each). RNA was then prepared from each of the cell mixes for subsequent sequencing.

To promote Kassandra stability against cancer-specific noise and expression, both cancer cell lines and sorted malignant cells

were added to the mixtures (Figure S27). Kassandra was not intended to predict exact tumor purity and outputs the ‘‘other’’ fraction

with all uncharacterized cells (including cancer cells). To address the stability of Kassandra, previously unseen cancer cell lines (e.g.,

COLO829, MCF7, and K562) were admixed with PBMCs at different ratios ranging from 100:0 to 12:88 (cell line: PBMC). Kassandra

reconstructed the percentages of all non-malignant immune cell types from PBMCs in correct proportions in all mixes and ratios

despite low PBMC mRNA content (Figure S27). The percentages of ‘‘other’’ previously unseen cell types were calculated with the

overall Pearson correlation coefficient of 0.94 (p < 0.001).

Cell sorting from blood and tissue
Different subtypes of CD4+ and CD8+ T cells, B cells, NK cells, monocytes, granulocytes, and dendritic cells (Table S6) were sorted

from the peripheral blood of healthy donors (Research Blood Components, Watertown, MA, USA). Briefly, PBMCs were prepared

from peripheral blood, labeled with monoclonal antibodies to identify populations of interest and sorted using a BD FACSAria III

through a 100 mm nozzle. The gating strategy is depicted in Figures 3A–3E. Post-sort purity was verified for each population and

found to be >95% for each subset (Figure S3F). The collected data were analyzed with FlowJo Software V10 (BD Biosciences,

Franklin Lakes, NJ, USA). Fresh tumor biopsies were obtained from Tissue for Research (New Orleans, LA, USA) and single cell sus-

pension were made using the Human Tumor Dissociation kit and gentle MACS Octo Dissociator with heaters (Miltenyi, Auburn, CA,

USA) according to themanufacturer’s instructions. Live (DAPIneg) CD4+ (CD45+, CD3+, CD4+), andCD8+ (CD45+, CD3+, CD8+) T cells,

macrophages (CD45+, CD14+, CD64+, CD15�, CD3�), and fibroblasts (CD45�, EpCAM�, CD31�, CD90+, Podoplanin+) were sorted

through the 100 mm nozzle. Post-sort purity was checked immediately after sorting and found to be >96% for cells sorted from pri-

mary tumor tissue. All cells were then transferred to RNAeasy lysis buffer and processed for sequencing.

RNA sequencing
RNA was extracted using the RNAeasy mini kit (Qiagen, Hilden, Germany). Libraries were prepared with Illumina TruSeq� Stranded

mRNA Library Prep (Poly-A mRNA; stranded). Libraries were sequenced on NovaSeq 6000 as Paired-End Reads (2x150) with tar-

geted coverage of 50 mln reads.

STATISTICAL ANALYSIS

Statistics were calculated using the scipy.stats module in Python 3. Correlations were Pearson unless otherwise stated. The signif-

icance of Pearson correlations (r) to be nonzero was assessed by the use of the exact distribution of r (two-tailed test). All graphswere

plotted using custom implementation ofmatplotlib and seaborn libraries of Python 3. The diagrams are drawn on the website www.

draw.io.
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